Details

Grafični uporabniški vmesnik za Agdo : magistrsko delo
ID Koležnik, Marko (Author), ID Bauer, Andrej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,42 MB)
MD5: B2C8742B639EE6B2282A88AE3301D42A
PID: 20.500.12556/rul/db576783-a1cc-4da0-ad1c-b17d26c45aea

Language:Slovenian
Keywords:Agda, grafični uporabniški vmesnik, ogrodje Cocoa, medprocesna komunikacija
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Place of publishing:Ljubljana
Publisher:[M. Koležnik]
Year:2015
Number of pages:IX, 55 str.
PID:20.500.12556/RUL-96234 This link opens in a new window
UDC:510.6
COBISS.SI-ID:17550937 This link opens in a new window
Publication date in RUL:27.09.2017
Views:2882
Downloads:392
Metadata:XML DC-XML DC-RDF
:
KOLEŽNIK, Marko, 2015, Grafični uporabniški vmesnik za Agdo : magistrsko delo [online]. Master’s thesis. Ljubljana : M. Koležnik. [Accessed 4 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=96234
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Keywords:Agda, graphical user interface, Cocoa framework, interprocess communication

Similar documents

Similar works from RUL:
  1. Part of speech tagging of slovene language using deep neural networks
  2. Superposition and compression of deep neutral networks
  3. Object detection and classification in aquatic environment using convolutional neural networks
  4. Analysis of infrared spectra using deep neural networks
  5. Automatic text summarization of Slovene texts using deep neural networks
Similar works from other Slovenian collections:
  1. Predicting GPS tracks with deep neural networks
  2. Comparison of different deep neural network learning algorithms in autonomous driving
  3. Zaznavanje sentimenta v novicah z globokimi nevronskimi mrežami
  4. The preparation of photos' dataset and its classification using deep neural networks
  5. Time series classification based on convolutional neural networks

Back