Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Detekcija uhljev s pomočjo konteksta
ID
Oblak, Tim
(
Author
),
ID
Peer, Peter
(
Mentor
)
More about this mentor...
,
ID
Štruc, Vitomir
(
Comentor
)
PDF - Presentation file,
Download
(3,01 MB)
MD5: 4E298391BD449BFC7CCF38CABABC52D8
PID:
20.500.12556/rul/803dd9fc-754c-45de-9732-754438c4917c
Image galllery
Abstract
Zaradi svojih biometričnih lastnosti uhlji predstavljajo zanesljiv in edinstven vir informacij, še posebej uporaben na področju identifikacije ljudi. Pogoj za uspešno prepoznavo uhlja je učinkovit način detekcije, ki kljub prekrivanju in različnim pozam objekte detektira z relativno velikim priklicem. V tej diplomski nalogi predstavimo nov način detekcije uhljev, ki z namenom potencialne izboljšave napovedovanja koristi informacijo o kontekstu obraza. Za potrditev domneve smo v začetku izboljšali eno od obstoječih metod detekcije. Rezultate slednje smo utežili z lokalizacijo potencialnih področij uhljev. Na koncu smo zgradili še lasten cevovod, ki informacijo o kontekstu prejme že na začetku. Rezultat končnega cevovoda je izrazito povečan priklic detekcij glede na posamezne slikovne točke, poleg tega pa ohranimo relativno dobro mero preciznosti. Na testni množici 250 slik tako dosežemo izboljšavo dodatnih 28,5 odstotnih točk po meri Jaccardovega koeficienta podobnosti.
Language:
Slovenian
Keywords:
biometrija
,
kontekst
,
uhelj
,
detekcija
,
globoko učenje
Work type:
Bachelor thesis/paper
Organization:
FRI - Faculty of Computer and Information Science
Year:
2017
PID:
20.500.12556/RUL-95923
Publication date in RUL:
25.09.2017
Views:
1783
Downloads:
437
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
OBLAK, Tim, 2017,
Detekcija uhljev s pomočjo konteksta
[online]. Bachelor’s thesis. [Accessed 5 June 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=95923
Copy citation
Share:
Secondary language
Language:
English
Title:
Context-aware ear detection
Abstract:
Because of their biometric properties, ears provide a reliable and unique source of information that is useful in the field of human identification. The condition for successful ear recognition is an effective detection method, which, despite various occlusions and poses, detects objects with a relatively large recall rate. In this thesis we present a novel approach to ear detection, which uses additional face context information for potential prediction improvement. In order to confirm the presumption, we first improved one of the existing detection methods. The results of the latter are weighted using localization of potential ear areas. Finally, we designed our own pipeline, which uses face context information from the beginning. The result of the final pipeline is a significant increase in pixel-wise detection recall rate, while preserving a relatively high measure of precision. On our test set of 250 images, we achieve an improvement of 28.5 percentage points according to the Jaccard coefficient of similarity.
Keywords:
biometrics
,
context
,
ear
,
detection
,
deep learning
Similar documents
Similar works from RUL:
Detekcija uhljev s konvolucijskimi nevronskimi mrežami
Visual ear detection and recognition in unconstrained environments
Generative deep models for ear images
Ear alignment using deep learning
DETECTION OF GLASS CRACKS USING MACHINE VISION
Similar works from other Slovenian collections:
Epileptic seizure detection using topographic maps and deep machine learning
Detection of single person in depth image using convolutional neural networks
No interface, no problem
Development of object detection system for autonomous vehicles by using LiDAR technology
Analysis of the efficiency of transfer learning for object detection
Back