izpis_h1_title_alt

Preštevanje dreves
ID Stojko, Jera (Author), ID Kuzman, Boštjan (Mentor) More about this mentor... This link opens in a new window

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/4723/ This link opens in a new window

Abstract
V teoriji grafov drevo pomeni kombinatoričen objekt, ki ga običajno definiramo kot povezan graf brez ciklov. V nalogi je predstavljen problem preštevanja različnih dreves s podanim številom vozlišč. Podani so štirje dokazi znamenitega Cayleyevega izreka za število označenih dreves: dokaz s Prüferjevo bijektivno konstrukcijo, dokaz s preštevanjem zakoreninjenih dreves na dva načina J. Pitmana, dokaz z rekurzivno formulo za število označenih gozdov in dokaz z uporabo Kirchhoffove zveze med determinantami matrik in vpetimi drevesi. V zadnjem delu je izpeljan novejši rezultat A. China in ostalih, o verjetnosti, da je naključno izbrano drevo v polnem grafu vpeto drevo. Posebej je obravnavano obnašanje limitne vrednosti verjetnosti, ko število vozlišč polnega grafa raste čez vse meje. Dobljeni rezultat je presenetljiv in lep.

Language:Slovenian
Keywords:graf
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:PEF - Faculty of Education
Year:2017
PID:20.500.12556/RUL-95887 This link opens in a new window
COBISS.SI-ID:11727689 This link opens in a new window
Publication date in RUL:25.09.2017
Views:1633
Downloads:296
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Counting trees
Abstract:
In graph theory, trees are combinatorial objects usually defined as connected graphs without cycles. In this thesis, the problem of counting different trees with a given number of vertices is presented. Four proofs of a celebrated theorem on the number of labeled trees by A. Cayley are given: by using a bijective construction due to H. Prüfer, by double counting of labeled rooted trees due to J. Pitman, by establishing a recursion on the number of labeled forests, and finally, by applying a relation between determinants and spanning trees due to H. Kirchhoff. In the final part, a recent result by A. Chin et al. is presented on the probability that a randomly picked tree in a complete graph is a spanning tree. In particular, the limit of this value as the number of vertices approaches infinity is observed. The result obtained is both surprising and beautiful.

Keywords:graph

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back