izpis_h1_title_alt

Preslikave na množicah operatorjev : doktorska disertacija
ID Plevnik, Lucijan (Author), ID Šemrl, Peter (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (700,47 KB)
MD5: 2269F55FF64F98E4D4322C78CCB713E9
PID: 20.500.12556/rul/c3325500-ae72-40ea-a846-d68f2f9f560e

Abstract
V uvodnem poglavju predstavimo več znanih rezultatov s področja ohranjevalcev na prostorih matrik in operatorjev. V drugem poglavju dokažemo osnovni izrek afine geometrije in osnovni izrek projektivne geometrije. Če je ▫$V$▫ končno razsežen realen ali kompleksen vektorski prostor dimenzije vsaj ▫$2$▫, potem osnovni izrek afine geometrije karakterizira bijektivne preslikave ▫$V \to V$▫, ki slikajo premice v premice (oziroma ohranjajo kolinearnost). Če je ▫$V$▫ realen ali kompleksen vektorski prostor dimenzije vsaj ▫$3$▫, potem osnovni izrek projektivne geometrije karakterizira bijektivne preslikave na projektivnem prostoru nad njim, ki ohranjajo komplanarnost. Kot posledico zadnjega izreka dokažemo tudi Uhlhornov izrek. Ti trije izreki so naša glavna orodja pri reševanju problemov v kasnejših poglavjih. V naslednjem poglavju preučujemo probleme naslednjega tipa. Naj bo ▫${\mathcal V}$▫ bodisi prostor vseh ▫$n\times n$▫ hermitskih matrik bodisi prostor vseh ▫$n \times n$▫ realnih simetričnih matrik bodisi množica efektov ali pa množica vseh projektorjev ranga ▫$1$▫. Bodi ▫$c$▫ realno število. Karakteriziramo bijektivne preslikave ▫$\phi : {\mathcal V} \to {\mathcal V}$▫, ki zadoščajo pogoju ▫${\rm sl} \left(AB\right) = c \iff {\rm sl} \left(\phi \left(A\right) \phi \left(B\right)\right) = c$▫ z nekaterimi dodatnimi omejitvami na ▫$c$▫, odvisnimi od množice ▫${\mathcal V}$▫. Naj bo ▫$\mathcal H$▫ neskončno razsežen realen ali kompleksen Hilbertov prostor, ▫$\mathcal{I_\infty (H)}$▫ pa množica omejenih linearnih idempotentnih operatorjev na ▫$\mathcal{H}$▫ z neskončno razsežno sliko in neskončno razsežnim jedrom. V četrtem poglavju karakteriziramo tri tipe preslikav na ▫$\mathcal{I_\infty (H)}$▫: urejenostne avtomorfizme, bijektivne preslikave, ki ohranjajo pravokotnost v obe smeri in bijektivne preslikave, ki ohranjajo komutativnost v obe smeri. V zadnjem poglavju dodatno predpostavimo, da je ▫$\mathcal{H}$▫ separabilen, z ▫${\rm Lat}\mathcal{H}$▫ pa označimo mrežo njegovih zaprtih podprostorov. Opišemo pare bijektivnih preslikav ▫$\phi$▫, ▫$\psi$▫ na ▫${\rm Lat}\mathcal{H}$▫ z naslednjo lastnostjo: podprostora ▫$U, V \in {\rm Lat}\mathcal{H}$▫ sta komplementirana natanko tedaj, ko isto velja za ▫$\phi \left( U \right)$▫ in ▫$\psi \left( V \right)$▫. Dobljeni rezultat reformuliramo kot opis bijektivnih preslikav na množici idempotentov, ki ohranjajo enakost slik in jeder. Kot posledico navedemo nekatere znane strukturne izreke o preslikavah na idempotentih.

Language:Slovenian
Keywords:hermitska matrika, realna simetrična matrika, projektor, efekt, sled, ohranjevalec, idempotent, delna urejenost, ortogonalnost, komutativnost, Hilbertov prostor, mreža zaprtih podprostorov, komplementirani podprostori, sosednji podprostori
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FMF - Faculty of Mathematics and Physics
Place of publishing:Ljubljana
Publisher:[L. Plevnik]
Year:2014
Number of pages:106 str.
PID:20.500.12556/RUL-95855 This link opens in a new window
UDC:512.643:517.98(043.3)
COBISS.SI-ID:17111641 This link opens in a new window
Publication date in RUL:24.10.2017
Views:1430
Downloads:614
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Abstract:
In the introduction we present several known results about preservers on matrix and operator spaces. In the second chapter we prove the fundamental theorem of affine geometry and the fundamental theorem of projective geometry. If ▫$V$▫ is a finite-dimensional real or complex vector space of dimension at least ▫$2$▫, then the fundamental theorem of affine geometry characterizes bijective maps ▫$V \to V$▫ which map lines into lines (they preserve colinearity). If ▫$V$▫ is a real or complex vector space of dimension at least ▫$3$▫, then the fundamental theorem of projective geometry characterizes bijective maps on the projective space of ▫$V$▫ which preserve complanarity. As a corollary we also prove Uhlhorn's theorem. These three theorems are our main tools when solving problems in later chapters. The problems of the following type are considered in the next chapter. Let ▫${\mathcal V}$▫ be the set of ▫$n \times n$▫ hermitian matrices or the set of ▫$n \times n$▫ real symmetric matrices or the set of all effects, or the set of all projections of rank one. Let ▫$c$▫ be a real number. We characterize bijective maps ▫$\phi : {\mathcal V} \to {\mathcal V}$ satisfying ${\rm sl} \left(AB\right) = c \iff {\rm sl} \left(\phi \left(A\right) \phi \left(B\right)\right) = c$▫ with some additional restrictions on ▫$c$▫, depending on the underlying set of matrices. Let ▫$\mathcal H$▫ be an infinite-dimensional real or complex Hilbert space and ▫$\mathcal{I_\infty (H)}$▫ the set of all bounded linear idempotent operators on ▫$\mathcal{H}$▫ with an infinite-dimensional image and an infinite-dimensional kernel. In the fourth chapter we characterize three types of maps on ▫$\mathcal{I_\infty (H)}$▫, namely poset automorphisms, bijective maps preserving orthogonality in both directions, and bijective maps preserving commutativity in both directions. In the last chapter we additionaly assume that ▫$\mathcal{H}$▫ is separable and and we denote the lattice of its closed subspaces by ▫${\rm Lat}\mathcal{H}$▫. We describe the general form of pairs of bijective maps ▫$\phi$▫, ▫$\psi$▫ on ▫${\rm Lat}\mathcal{H}$▫ having the following property: subspaces ▫$U,V \in {\rm Lat}\mathcal{H}$▫ are complemented if and only if the same holds for ▫$\phi \left( U \right)$▫ and▫$\psi \left( V \right)$▫. Then we reformulate this theorem as a description of bijective image equality and kernel equality preserving maps acting on bounded linear idempotent operators. Several known structural results for maps on idempotents are easy consequences.

Keywords:hermitian matrix, real symmetric matrix, projection, effect, trace, preserver, idempotent, partial order, orthogonality, commutativity, Hilbert space, lattice of closed subspaces, complemented subspaces, adjacent subspaces

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back