izpis_h1_title_alt

Refleksivnost in refleksivnostni defekt prostorov operatorjev : doktorska disertacija
ID Rudolf, Tina (Author), ID Bračič, Janko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (632,00 KB)
MD5: ED7D750DD3DAF25044E3142630CF0596
PID: 20.500.12556/rul/7a9e9152-548e-4f7d-9476-9c290d6d1a56

Abstract
Naj bo ▫$\mathscr{H}$▫ kompleksen separabilen Hilbertov prostor, ▫$\mathscr{B(H)}$▫ algebra omejenih linearnih operatorjev na ▫$\mathscr{H}$▫ in ▫$k$▫ naravno število. Za dano zaporedje nenegativnih celih števil ▫$r_1 \ge r_2 \ge \dots \ge 0$▫ dokažemo, da obstaja takšen podprostor ▫$\mathcal{S} \subseteq \mathscr{B(H)}$▫, da je njegov ▫$k$▫-refleksivnostni defekt enak ▫$r_k$▫ za vse ▫$k \ge 1$▫. V primeru, ko je dani Hilbertov prostor končno razsežen, podamo eksplicitno formulo za refleksivnostni defekt jedra poljubnega elementarnega operatorja dolžine 2, t.j., operatorja na algebri ▫$\mathscr{B(H)}$▫ oblike ▫$\Delta(T) = A_1TB_1 - A_2TB_2$▫, kjer sta ▫$A_1$▫, ▫$A_2$▫ ter ▫$B_1$▫, ▫$B_2$▫ para linearno neodvisnih operatorjev. Natančno karakteriziramo ▫$k$▫-refleksivnostni defekt slike posplošenega odvajanja ter slike elementarnega operatorja oblike ▫$\Delta(T) = ATB - T$▫, kjer sta ▫$A, \: B \in \mathscr{B(H)}$▫ dana operatorja. Obravnavamo tudi ▫$k$▫-refleksivnost in ▫$k$▫-hiperrefleksivnost nekaterih prostorov operatorjev nad končno ortogonalno direktno vsoto kompleksnih separabilnih Hilbertovih prostorov. Poiščemo zgornjo in spodnjo mejo za ▫$k$▫-hiperrefleksivnostno konstanto takšnega prostora in pri tem dokažemo, da je dobljena spodnja meja optimalna. Podobne ocene izpeljemo tudi v primeru, ko direktna vsota Hilbertovih prostorov ni nujno ortogonalna. Izkaže se, da so dobljene meje za ▫$k$▫-hiperrefleksivnostno konstanto prostora tedaj odvisne tudi od kotov med danimi Hilbertovimi prostori. Obravnavamo še hiperrefleksivnostne konstante nizko razsežnih algeber matrik, ki imajo nekomutativno mrežo invariantnih podprostorov.

Language:Slovenian
Keywords:k-refleksivnost, k-refleksivno pokritje, k-refleksivnostni defekt, k-hiperrefleksivnost, k-hiperrefleksivnostna konstanta, elementarni operatorji, posplošeno odvajanje, matrični šopi, Kroneckerjeva kanonična forma.
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FMF - Faculty of Mathematics and Physics
Place of publishing:Ljubljana
Publisher:[T. Rudolf]
Year:2014
Number of pages:XII, 73 str.
PID:20.500.12556/RUL-95852 This link opens in a new window
UDC:517.986(043.3)
COBISS.SI-ID:16915545 This link opens in a new window
Publication date in RUL:24.10.2017
Views:1726
Downloads:338
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Abstract:
Let ▫$\mathscr{H}$ ▫be a complex separable Hilbert space, let ▫$\mathscr{B(H)}$▫ denote the algebra of all bounded linear operators on ▫$\mathscr{H}$▫ and let ▫$k$▫ be a positive integer. Given a sequence of nonnegative integers ▫$r_1 \ge r_2 \ge \dots \ge 0$▫ we show that there exists a subspace ▫$\mathcal{S} \subseteq \mathscr{B(H)}$▫, such that its ▫$k$▫-reflexivity defect is equal to ▫$r_k$▫ for all ▫$k \ge 1$▫. For a finite dimensional complex Hilbert space we give an explicit formula for the reflexivity defect of the kernel of an arbitrary elementary operator of length 2, i.e., an operator, acting on the algebra ▫$\mathscr{B(H)}$▫, of the form ▫$\Delta(T) = A_1TB_1 - A_2TB_2$▫ where ▫$A_1$▫, ▫$A_2$▫ and ▫$B_1$, $B_2$▫ are given pairs of linearly independent operators. We characterize the ▫$k$▫-reflexivity defect of the image of a generalized derivation. Using the latter we also give an explicit formula for the ▫$k$▫-reflexivity defect of the image of an elementary operator on ▫ $\mathscr{B(H)}$▫ of the form ▫$\Delta(T) = ATB - T$▫ where ▫$A, \: B \in \mathscr{B(H)}$▫ are given operators. We also consider the ▫$k$▫-reflexivity and the $k$-hyperreflexivity of some subspaces of operators over the orthogonal direct sum of complex separable Hilbert spaces. We give a lower and upper bound for the $k$-hyperreflexivity constant of such a space and we prove that the lower bound is optimal. Furthermore, we give similar estimates when the direct sum of Hilbert spaces is not necessary orthogonal. In this case the bounds for the ▫$k$▫-hyperreflexivity constant depend also on the angles between the given Hilbert spaces. We also consider the hyperreflexivity constant of the low dimensional algebras of matrices that have a noncommutative lattice of invariant subspaces.

Keywords:k-reflexivity, k-reflexive cover, k-reflexivity defect, k-hyperreflexivity, k-hyperreflexivity constant, elementary operators, generalized derivation, matrix pencils, Kronecker canonical form

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back