izpis_h1_title_alt

Holomorfni spreji v kompleksni analizi in geometriji : doktorska disertacija
ID Stopar, Kris (Author), ID Prezelj, Jasna (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (446,98 KB)
MD5: A7AD0476C438114083055A3D63F9AE1C
PID: 20.500.12556/rul/ba67f15e-404f-45f4-bd8f-826064930fbf

Abstract
Naj bo ▫$\pi \colon Z \to X$▫ holomorfna submerzija iz kompleksne mnogoterosti ▫$Z$▫ na kompleksno mnogoterost ▫$X$▫ in ▫$D \Subset X$▫ 1-konveksna domena s strogo psevdokonveksnim robom. V disertaciji dokažemo, da pod določenimi predpostavkami vedno obstaja sprej ▫$\pi$▫-prerezov nad ▫$\bar{D}$▫, ki ima predpisano jedro, fiksira izjemno množico ▫$E$▫ domene ▫$D$▫ in je dominanten na ▫$\bar{D} \setminus E$▫. Vsak prerez v tem spreju je razreda ▫${\mathcal C}^k(\bar{D})$▫ in holomorfen na ▫$D$▫. Kot posledico dobimo več aproksimacijskih rezultatov za ▫$\pi$▫-prereze. Med drugim dokažemo, da lahko ▫$\pi$▫-prereze, ki so razreda ▫${\mathcal C}^k(\bar{D})$▫ in holomorfni na ▫$D$▫ aproksimiramo v ▫${\mathcal C}^k(\bar{D})$▫ topologiji s ▫$\pi$▫-prerezi, ki so holomorfni v odprtih okolicah množice ▫$\bar{D}$▫. Pod dodatnimi predpostavkami na submerzijo dobimo tudi aproksimacijo z globalnimi holomorfnimi ▫$\pi$▫-prerezi in princip Oka nad 1-konveksnimi mnogoterostmi. Vključimo tudi rezultat o obstoju pravih holomorfnih preslikav iz 1-konveksnih domen v ▫$q$▫-konveksne mnogoterosti.

Language:Slovenian
Keywords:1-konveksna domena, 1-konveksen Cartanov par, Cartanova lema, sprej, sprej prerezov, aproksimacija, princip Oka, prava holomorfna preslikava
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FMF - Faculty of Mathematics and Physics
Place of publishing:Ljubljana
Publisher:[K. Stopar]
Year:2013
Number of pages:72 str.
PID:20.500.12556/RUL-95850 This link opens in a new window
UDC:517.55(043.3)
COBISS.SI-ID:16765529 This link opens in a new window
Publication date in RUL:24.10.2017
Views:1354
Downloads:250
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Abstract:
Let ▫$\pi \colon Z \to X$▫ be a holomorphic submersion of a complex manifold ▫$Z$▫ onto a complex manifold ▫$X$▫ and ▫$D \Subset X$▫ a 1-convex domain with strongly pseudoconvex boundary. We prove that under certain conditions there always exists a spray of ▫$\pi$▫-sections over ▫$\bar{D}$▫ which has prescribed core, fixes the exceptional set ▫$E$▫ of ▫$D$▫, and is dominating on ▫$\bar{D} \setminus E$▫. Each section in this spray is of class ▫${\mathcal C}^k(\bar{D})$▫ and holomorphic on ▫$D$▫. As a consequence we obtain several approximation results for ▫$\pi$▫-sections. In particular, we prove that ▫$\pi$▫-sections which are of class ▫${\mathcal C}^k(\bar{D})$▫ and holomorphic on ▫$D$▫ can be approximated in the ▫${\mathcal C}^k(\bar{D})$▫ topology by ▫$\pi$▫-sections that are holomorphic in open neighborhoods of ▫$\bar{D}$▫. Under additional assumptions on the submersion we also get approximation by global holomorphic ▫$\pi$▫-sections and the Oka principle over 1-convex manifolds. We include a result on the existance of proper holomorphic maps from 1-convex domains into ▫$q$▫-convex manifolds.

Keywords:1-convex domain, 1-convex Cartan pair, Cartan lemma, spray, spray of sections, approximation, Oka principle, proper holomorphic map

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back