Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Persistent homology and duality : doctoral thesis
ID
Kališnik Verovšek, Sara
(
Author
),
ID
Smrekar, Jaka
(
Mentor
)
More about this mentor...
,
ID
Repovš, Dušan
(
Comentor
)
PDF - Presentation file,
Download
(824,68 KB)
MD5: 794BD25A6F70BA3E0073275BD8646095
PID:
20.500.12556/rul/eb6643dd-e796-4088-a8c9-58bb60770ff1
Image galllery
Abstract
An important problem with sensor networks is that they do not provide information about the regions that are not covered by their sensors. If the sensors in a network are static, then the Alexander Duality Theorem from classic algebraic topology is sufficient to determine the coverage of a network. However, in many networks the nodes change position with time. In the case of dynamic sensor networks, we consider the covered and uncovered regions as parametrized spaces with respect to time. Parametrized homology is a variant of zigzag persistent homology that measures how the homology of the levelsets of the space changes as we vary the parameter. We present a few theorems that extend different versions of classical Alexander Duality theorem to the setting of parametrized homology theories. This approach sheds light on the practical problem of 'wandering' loss of coverage within dynamic sensor networks.
Language:
English
Keywords:
Alexander duality
,
persistent homology
,
zigzag persistence
,
levelset zigzag persistence
,
parametrized homology
Work type:
Doctoral dissertation
Typology:
2.08 - Doctoral Dissertation
Organization:
FMF - Faculty of Mathematics and Physics
Place of publishing:
Ljubljana
Publisher:
[S. Kališnik]
Year:
2013
Number of pages:
90 str.
PID:
20.500.12556/RUL-95849
UDC:
515.14(043.3)
COBISS.SI-ID:
16756057
Publication date in RUL:
24.10.2017
Views:
1802
Downloads:
695
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
KALIŠNIK VEROVŠEK, Sara, 2013,
Persistent homology and duality : doctoral thesis
[online]. Doctoral dissertation. Ljubljana : S. Kališnik. [Accessed 16 May 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=95849
Copy citation
Share:
Secondary language
Language:
Slovenian
Title:
Vztrajna homologija in dualnost
Abstract:
Eden izmed večjih problemov pri preučevanju senzorskih omrežij je, da nudijo le informacijo o področju, ki ga senzorji pokrivajo. V statičnih senzorskih omrežjih klasična Aleksandrova dualnost zadošča kot kriterij za pokritost, ampak v mnogo omrežjih se položaj senzorjev spreminja s časom in ta izrek ni dovolj. V primeru dinamičnih senzorskih omrežij sta območji pokritosti in nepokritosti parametrizirana prostora glede na čas. Parametrizirana homologijaje različica cikcak vztrajne homologije, ki meri, kako se homologijanivojnic prostora spreminja, če spreminjamo parameter. V disertaciji predstavimo parametrizirane ekvivalente nekaj različic klasične Aleksandrove dualnosti. Parametrizirana Aleksandrova dualnost nam tudi pomaga pri razumevanju 'problema vsiljivca'.
Keywords:
Aleksandrova dualnost
,
vztrajna homologija
,
cikcak vztrajnost
,
cikcak vztrajnost za nivojnice
,
parametrizirana homologija
Similar documents
Similar works from RUL:
Construction of the confidence region boundry
Guassian linear mixed models
Testing for homogeneity and independence in 2 × 2 contingency tables
The Kolmogorov-Smirnov test
Statystical analysis of significant point dispalements in geodetic networks
Similar works from other Slovenian collections:
TESTING OF STATISTICAL HYPOTHESES
Evaluation of probability-distribution models for wind-power forecast error
Skripta za predmet Verjetnost in statistika v tehniki in naravoslovju
O neeksaknotsti eksaktnega Fisherjevega testa za dva neodvisna deleža
DEVELOPMENT OF WEB APPLICATION FOR SIMPLE STATISTICAL TESTS
Back