Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Sistem potrjevanja učnih gradiv : diplomsko delo
ID
Rupnik, Sandra
(
Author
),
ID
Brezovšek, Marjan
(
Mentor
)
More about this mentor...
URL - Presentation file, Visit
http://dk.fdv.uni-lj.si/diplomska/pdfs/Rupnik-Sandra.PDF
Image galllery
Language:
Slovenian
Work type:
Undergraduate thesis
Typology:
2.11 - Undergraduate Thesis
Organization:
FDV - Faculty of Social Sciences
Place of publishing:
Ljubljana
Publisher:
[S. Rupnik]
Year:
2007
Number of pages:
83 f.
PID:
20.500.12556/RUL-9558
UDC:
37.014(497.4)(043)
COBISS.SI-ID:
26699101
Publication date in RUL:
11.07.2014
Views:
2996
Downloads:
187
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
RUPNIK, Sandra, 2007,
Sistem potrjevanja učnih gradiv : diplomsko delo
[online]. Bachelor’s thesis. Ljubljana : S. Rupnik. [Accessed 5 April 2025]. Retrieved from: http://dk.fdv.uni-lj.si/diplomska/pdfs/Rupnik-Sandra.PDF
Copy citation
Share:
Similar documents
Similar works from RUL:
Object detection and classification in aquatic environment using convolutional neural networks
Semantic segmentation of images for indoor place recognition
Siamese neural network for motion detection in video sequences
Segmentacija rok za obogateno resničnost
A neural network for trench detection based on Lidar elevation model
Similar works from other Slovenian collections:
Time series classification based on convolutional neural networks
Prediction of geospatial raster data using convolutional neural networks
Food recognition from digital images using convolutional neural networks
Person age estimation based on digital images using convolutional neural networks
Person activity recognition from image sequence using convolutional neural networks
Back