izpis_h1_title_alt

E-učni sistemi in priporočanje učnih gradiv
ID BAVCON, DAVID (Author), ID Bosnić, Zoran (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,33 MB)
MD5: F387A2EC076E38E7C1D4F5D8A35CBE41
PID: 20.500.12556/rul/45e47253-1725-41ba-aee9-f839f3654c77

Abstract
V okviru našega dela smo razvili preprost e-učni sistem, ki priporoča gradiva dijakom. Najprej smo naredili kratek pregled o tem, kaj naj bi vsebovali e-učni sistemi. V nadaljevanju smo se lotili implementacije lastnega sistema, v katerem je na voljo tudi sprotna učna analitika. Za potrebe testiranja sistema smo naredili tudi nekaj gradiv, ki pokrivajo predmet informatika v gimnazijah. Potem smo v sistemu testirali tri različne načine priporočanja, in sicer: čim bolj podobno gradivo, čim bolj drugačno gradivo in naključni vrstni red gradiv. Vsakega od načinov je testirala tretjina dijakov. Na osnovi primerjave preciznosti, priklica in mere F1 smo ugotovili, da sta najboljša načina naključni in, takoj za njim, matrična faktorizacija, ki vrača medseboj čim bolj drugačno gradivo. Način, ki dijaku ponudi čim bolj medseboj podobno gradivo, se je v poskusih izkazal kot slab. Rezultati kažejo, da moramo učencu priporočiti naključno gradivo. Glede na preciznost z ostalimi načini priporočanja dosežemo slabše rezultate.

Language:Slovenian
Keywords:e-učni sistemi, priporočanje gradiv, učna analitika
Work type:Master's thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2017
PID:20.500.12556/RUL-95567 This link opens in a new window
Publication date in RUL:20.09.2017
Views:1180
Downloads:526
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:E-learning systems and recommending learning materials
Abstract:
Within our thesis, we developed a simple e-learning system which recommends learning materials to high school students. We began by preparing a short overview of appropriate e-curriculums. We continued by implementing our own system that includes real-time learning analytics. To test the system, we also created some learning materials on high school information science. We tested three different recommendation techniques, i.e. learning materials that are the closest match to previous materials and the furthest match from previous materials and materials in random order. Each material assignment strategy was tested on one third of students. Based on observing precision, recall and F1 measure, we established that the best system turns out to be random order material assignment, followed by matrix factorisation that offers the least matching materials to previous materials. The technique offering the closest matching materials proved to be the least useful. The results therefore indicate that we should offer students random materials. Other strategies provided considerably worse results when we compared them by precision.

Keywords:e-learning system, recommendation of learning material, learning analytics

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back