Introduction: Interaction between microorganism and the surface of the contact material plays an important role in various industries. The surfaces of the materials can be contaminated with certain micro-organism, which under certain conditions are deposited to the surface, thus starting with the formation of a biofilm, which may have negative impact on health and environment. Coatings can reduce bacterial adheison, biofilm formation and may have negative affect on bacterial dolonization. Purpose: Change the surface of the steel with etching or coating and determine the effect of surface modification on adhesion of S. aureus. Methods: The material used, was stainless steel AISI 316 and steel in the form of tiles measuring 10×10 mm. The surfaces were changed and divided into four groups: 1. AISI 316 without treatment, 2. AISI 316 mechanically sanded with granulation type P1200, 3. AISI 316 chemically treated with 1 mol H2SO4, 4. Steel with a silver coating. On the modified surface tiles, measurement of rougness, hardness and contact angle were performed. The intensification of the bacterial cell attachment was determined by measuring the absorbance of the released crystal violet color from colored cell fixated on the test plates after 10 hours of incubation and with scanning electron microscope, where we examined and photographed the surface. Results: The results of the rougness showed that the tiles from the roughest to the smoothest are followed in the following order: silver-coated steel, AISI 316 mechanically etched, AISI 316 without modification, AISI 316 chemically etched. After 10 hours of incubation, most bacteria were attached to the mechanically treated surface, fewer bacteria were attached to untreated surfface of the stainless steel, the least bacteria were attached to silver-coated steel and chemically treated stainless steel. Discussion and conclusion: The results showed the influence of the topography of the material on the degree of bacterial adheison. In parallel with rougness, the number of attached bacteria is also increasing. The reason fort his is most likely a large surface area of the material at greater rougness and that bacteria are more protected against external factors. The number of bacteria attached to the surface of the material can be reduced if the material is protected with silver, because silver has a negative effect on the bacterial adheison and on the already attached bacteria.
|