Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Zaznavanje obrazov z OpenMV modulom za prilagajanje modernega montažnega mesta delavcem
ID
Štupar, Nives
(
Author
),
ID
Herakovič, Niko
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(2,65 MB)
MD5: CC92D254C75E38AACB79FB62CA7321A8
PID:
20.500.12556/rul/740a6a1f-4e43-4eb1-818e-f982d5768697
Image galllery
Abstract
V sklopu Industrije 4.0 predstavlja pomemben in dostikrat spregledan segment tudi ergonomija in aktivno prilagajanje ročnega montažnega mesta delavcu. Za prilagoditev ročnega montažnega mesta je potrebno delavca prepoznati, kar se trenutno največkrat izvaja s pomočjo RFID kartice ali vpisom kode delavca. Vendar pa imajo ti sistemi številne pomanjkljivosti kot so npr. izguba časa, stalno nošenje RFID kartice ipd. Zato smo v zaključni nalogi razvili sistem za prepoznavanje obrazov, ki ga bomo v prihodnosti uporabili za prilagajanje ročnega montažnega mesta v pametni tovarni, ki je glavna ideja industrije 4.0. Na začetku smo predstavili osnove Industrije 4.0, ergonomijo ročnega montažnega mesta, RFID in ostale načine identifikacije, ki so potrebni za razumevanje koncepta 4.0. Nato je sledil razvoj algoritma za prepoznavanje obrazov z OpenMV modulom. Z uporabo OpenCV knjižnic smo razvili program, ki primerja zajeto sliko z interno bazo obrazov. Glede na ujemanje izbere najboljši približek in izpiše ime zaznane osebe. Na koncu smo izvedli analizo razvitega algoritma s petimi različnimi osebami in petimi ponovitvami, s čimer smo potrdili delovanje sistema.
Language:
Slovenian
Keywords:
industrija 4.0
,
ročna montaža
,
strojni vid
,
OpenMV
,
prepoznavanje obraza
Work type:
Bachelor thesis/paper
Organization:
FS - Faculty of Mechanical Engineering
Year:
2017
PID:
20.500.12556/RUL-95529
Publication date in RUL:
20.09.2017
Views:
2282
Downloads:
550
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ŠTUPAR, Nives, 2017,
Zaznavanje obrazov z OpenMV modulom za prilagajanje modernega montažnega mesta delavcem
[online]. Bachelor’s thesis. [Accessed 1 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=95529
Copy citation
Share:
Secondary language
Language:
English
Title:
Face Recognition with OpenMV Module for Adjusting Modern Hand Assembly Place
Abstract:
Within Industry 4.0, ergonomics and active adjusting of the manual assembly place are very important, but quite often overlooked segments. To adjust the manual assembly place, the worker needs to be identified, which is most often done with an RFID card or by entering of a worker’s ID code. However, these systems have shortcomings such as time wasting, always having an RFID card present etc. That is why in the final task, we developed a facial recognition system that will be used in the future to adjust the manual assembly place in the smart factory, which is the main idea of an industry 4.0. At the beginning of the final paper we presented the basics of Industry 4.0, the ergonomics of the manual assembly place, RFID and a few other systems for face recognition that are important for understanding the 4.0 concept. Then we developed an algorithm for face recognition using the OpenMV module. By using OpenCV libraries, we developed a program that compares captured photos with an internal data base. Depending on the matching results, it selects the best approximation and displays the name of the chosen person. In the end, we tested the developed algorithm with five different individuals and five repetitions, which confirmed the functioning of the system.
Keywords:
industry 4.0
,
hand assembly
,
machine vision
,
OpenMV
,
face recognition
Similar documents
Similar works from RUL:
Protimikrobna učinkovitost in biorazgradljivost mešanice naravnih celuloznih vlaken z vgrajenim ZnO
Protibakterijska aktivnost didecildimetilamonijevega klorida
Feline otitis externa caused by methicillin-resistant Staphylococcus aureus with mixed hemolytic phenotype and overview of possible genetic backgrounds
Antimicrobial resistance and molecular characterization of methicillin-resistant Staphylococcus aureus from two pig farms
Inhibition of MurA enzyme from Escherichia coli and Staphylococcus aureus by diterpenes from Lepechinia meyenii and their synthetic analogs
Similar works from other Slovenian collections:
Primerjava klasične gojitvene metode na selektivnih agarnih gojiščih in molekularne metode verižne reakcije s polimerazo za analizo umetno kontaminiranih tekstilij
Structural basis of human clamp sliding on DNA
Enterohemorrhagic Escherichia coli O157
Back