Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Snovanje vetrne elektrarne manjših moči
ID
Veladžić, Aldin
(
Author
),
ID
Kunc, Robert
(
Mentor
)
More about this mentor...
,
ID
Prebil, Ivan
(
Comentor
)
PDF - Presentation file,
Download
(3,06 MB)
MD5: 1788DB00F429EAA788F6C3BE37A31660
PID:
20.500.12556/rul/6065bc69-a903-40c0-875d-cd11ed7bd6e6
PDF - Appendix,
Download
(216,70 KB)
MD5: 2C90EF07BCBDCE907C40C227C8C6A860
PID:
20.500.12556/rul/05428d0f-9198-4a1e-8968-e35b01df3896
Image galllery
Abstract
V Sloveniji je proizvodnja električne energije iz vetra zanemarjena oziroma je ta delež zelo majhen. Projekti večjih vetrnih elektrarn so precej dragi in ovirani s strani birokracije, pa še vetrne razmere niso najbolj ugodne, saj je le majhen del območja Slovenije ugoden za postavitev večjih vetrnih elektrarn. Zato se je treba skoncentrirati na projekte vetrnih elektrarn do 20 kW. V okviru diplomskega dela je narejen podroben pregled literature in trga, ki predstavlja osnovo pri snovanju vetrnih elektrarn manjših moči, ter pregled obstoječih in možnih novih konstrukcijskih rešitev. Pri zasnovi vetrne elektrarne so upoštevane zahteve in določila veljavnih standardov in predpisov ter zahteve in kriteriji za montažo in vzdrževanje. Pri zasnovi vetrne elektrarne so upoštevane vetrovne razmere v Sloveniji. V okviru diplomskega dela bo pripravljen predlog konstrukcijskih rešitev, ki bodo glede na tehnične in ekonomske kriterije ustrezno ovrednotene, ter izbrana optimalna zasnova kot dokumentacija, ki je priložena kot sestavna risba koncepta vetrne elektrarne.
Language:
Slovenian
Keywords:
vetrnice
,
obnovljivi viri energije
,
zelena energija
,
vetrne turbine
,
snovanje
,
male elektrarne
Work type:
Bachelor thesis/paper
Organization:
FS - Faculty of Mechanical Engineering
Year:
2017
PID:
20.500.12556/RUL-95455
Publication date in RUL:
20.09.2017
Views:
3526
Downloads:
599
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
VELADŽIĆ, Aldin, 2017,
Snovanje vetrne elektrarne manjših moči
[online]. Bachelor’s thesis. [Accessed 28 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=95455
Copy citation
Share:
Secondary language
Language:
English
Title:
Design of wind power plants of small power
Abstract:
In Slovenia, the production of electricity from the wind is neglected, or this share is very small. Major wind farm projects are fairly expensive and hindered by bureaucracy, and the wind situation is not the most favorable, only a small part of the territory of Slovenia is favorable for the installation of major wind power plants. Therefore, it is necessary to concentrate on projects of wind farms up to 20 kW. Within the diploma work, a detailed overview of literature and the market, which forms the basis for the design of wind power plants of small power and a review of existing and possible new construction solutions. At the designing a wind power plant is complyed the requirements and provisions of the applicable standards and regulations, and requirements and criteria for assembly and maintenance. At the design of the wind power plant is complyed wind conditions in Slovenia. In the framework of the diploma will be prepared the proposal of structural solutions, which according to the technical and economic criteria will be adequately evaluated and the optimal design chosen, as the documentation, an integrated drawing of the concept of a wind power plant is attached.
Keywords:
wind power plants
,
renewable energy sources
,
green energy
,
wind turbines
,
design
,
small power plants
Similar documents
Similar works from RUL:
Long-term object tracking using region proposals
Segmentacija rok za obogateno resničnost
Improving quality of scanned visual content using convolutional neural networks
Recovery of superquadric parameters from depth images using deep learning
Discriminative correlation filter with segmentation and context for robust tracking
Similar works from other Slovenian collections:
Recognition of tree features from photography using convolutional neural networks
Back