izpis_h1_title_alt

Preproste namizne igre kot modeli markovskih verig
ID Franko, Teja (Author), ID Kuzman, Boštjan (Mentor) More about this mentor... This link opens in a new window

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/4694/ This link opens in a new window

Abstract
Markovske verige so matematični model za naključno prehajanje med različnimi možnimi stanji z vnaprej znanimi verjetnostmi prehoda. Glede na število možnih stanj ločimo diskretne in zvezne markovske verige. Markovske verige s končnim številom stanj lahko učinkovito obravnavamo z orodji linearne algebre. Naj bo S={1,2,…,n} končna množica stanj neke markovske verige. Verjetnost prehoda iz stanja s_i v stanje s_j označimo s p_ij in sestavimo prehodno matriko Pvelikosti n×n. Dobljena matrika je (vrstično) stohastična matrika. Posebne algebrske lastnosti stohastičnih matrik omogočajo napovedovanje obnašanja markovskih verig po določenem številu korakov. S pomočjo markovskih verig lahko na nekoliko poenostavljen način obravnavamo tudi različne enostavnejše matematične probleme iz verjetnosti in preproste namizne igre, kot so Hi Ho Cherry O, Kače in lestve, Monopoly.

Language:Slovenian
Keywords:verjetnost
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:PEF - Faculty of Education
Year:2017
PID:20.500.12556/RUL-95244 This link opens in a new window
COBISS.SI-ID:11716169 This link opens in a new window
Publication date in RUL:20.09.2017
Views:1577
Downloads:244
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Simple board games as Markov chains models
Abstract:
Markov chains are a mathematical model for random passing between states with pre-known transition probabilities. Depending on the number of possible states, we know dicrete and continuous - time markov chains. Markov chains with a finite number of states can be effectively considered with linear algebra tools. Let S={1,2,…,n} be the finite set of states of a markov chain. The transition probability between states s_i and s_j , denoted by p_ij, gives us the transition matrix P of size n×n . Matrix obtained like this is a (row) stochastic matrix. Special algebraic properties of stochastic matrices allow us to predict the behaviour of Markov chains after a certain number of steps. With the help of knowing Markov chains, various simpler mathematical problems and simple board games, such as Hi Ho Cherry O, Snakes and ladders, Monopoly, can be dealt with.

Keywords:probability

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back