izpis_h1_title_alt

Diedrska simetrija : diplomsko delo
Glavan, Marko (Author), Kuzman, Boštjan (Mentor) More about this mentor... This link opens in a new window, Horvat, Eva (Co-mentor)

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/4687/ This link opens in a new window

Abstract
V diplomskem delu obravnavamo diedrsko grupo, njene lastnosti in strukturo ter diedrske simetrije različnih objektov. Diedrska grupa je ena najenostavnejših končnih grup. Ker v nasprotju s ciklično grupo ni komutativna, pa je struktura podgrup diedrske grupe bolj zanimiva. Pred samo vpeljavo pojma diedrske grupe najprej ponovimo osnovne pojme iz teorije grup in iz evklidske geometrije, ki jih potrebujemo v nadaljevanju. Nato definiramo diedrsko grupo kot grupo izometrij evklidske ravnine, ki ohranjajo pravilni n-kotnik. Poiščemo vse njene elemente in jih razvrstimo v konjugiranostne razrede. Nato opišemo tudi abstraktno karakterizacijo diedrske grupe in preučimo strukturo njenih podgrup. Za konec pa si ogledamo še nekaj konkretnih matematičnih ter ne-matematičnih objektov z diedrsko simetrijo.

Language:Slovenian
Keywords:grupa, pravilni n-kotnik, zrcaljenje, izometrija, rotacija, diedrska grupa, faktor
Work type:Bachelor thesis/paper (mb11)
Tipology:2.11 - Undergraduate Thesis
Organization:PEF - Faculty of Education
Year:2017
Publisher:[M. Glavan]
Number of pages:37 str.
UDC:51(043.2)
COBISS.SI-ID:11711561 Link is opened in a new window
Views:531
Downloads:187
Metadata:XML RDF-CHPDL DC-XML DC-RDF
 
Average score:(0 votes)
Your score:Voting is allowed only to logged in users.
:
Share:AddThis
AddThis uses cookies that require your consent. Edit consent...

Secondary language

Language:English
Title:Dihedral symmetry
Abstract:
In this BCs thesis we describe the dihedral group, its structure and properties, and find certain objects which have dihedral symmetry. Dihedral group is one of the simplest finite groups. Since it is non-commutative, the structure of subgroups of the dihedral group is more interesting than that of the cyclic group. Before introducing the concept of the dihedral group, we make a short review of the basic notions from group theory and from the euclidean geometry that will be used in the thesis. Then we define the dihedral group as the group of isometries of the euclidean plane which preserve a regular $n$-gon. We list all its elements and classify them into conjugacy classes. We also find an abstract characterization of the dihedral group and examine the structure of its subgroups. To conclude, we list some concrete mathematical and non-mathematical objects which have dihedral symmetry.

Keywords:mathematics, matematika

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Comments

Leave comment

You have to log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back