izpis_h1_title_alt

Diedrska simetrija : diplomsko delo
ID Glavan, Marko (Author), ID Kuzman, Boštjan (Mentor) More about this mentor... This link opens in a new window, ID Horvat, Eva (Comentor)

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/4687/ This link opens in a new window

Abstract
V diplomskem delu obravnavamo diedrsko grupo, njene lastnosti in strukturo ter diedrske simetrije različnih objektov. Diedrska grupa je ena najenostavnejših končnih grup. Ker v nasprotju s ciklično grupo ni komutativna, pa je struktura podgrup diedrske grupe bolj zanimiva. Pred samo vpeljavo pojma diedrske grupe najprej ponovimo osnovne pojme iz teorije grup in iz evklidske geometrije, ki jih potrebujemo v nadaljevanju. Nato definiramo diedrsko grupo kot grupo izometrij evklidske ravnine, ki ohranjajo pravilni n-kotnik. Poiščemo vse njene elemente in jih razvrstimo v konjugiranostne razrede. Nato opišemo tudi abstraktno karakterizacijo diedrske grupe in preučimo strukturo njenih podgrup. Za konec pa si ogledamo še nekaj konkretnih matematičnih ter ne-matematičnih objektov z diedrsko simetrijo.

Language:Slovenian
Keywords:grupa, pravilni n-kotnik, zrcaljenje, izometrija, rotacija, diedrska grupa, faktor
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:PEF - Faculty of Education
Publisher:[M. Glavan]
Year:2017
Number of pages:37 str.
PID:20.500.12556/RUL-95234 This link opens in a new window
UDC:51(043.2)
COBISS.SI-ID:11711561 This link opens in a new window
Publication date in RUL:20.09.2017
Views:2304
Downloads:413
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Dihedral symmetry
Abstract:
In this BCs thesis we describe the dihedral group, its structure and properties, and find certain objects which have dihedral symmetry. Dihedral group is one of the simplest finite groups. Since it is non-commutative, the structure of subgroups of the dihedral group is more interesting than that of the cyclic group. Before introducing the concept of the dihedral group, we make a short review of the basic notions from group theory and from the euclidean geometry that will be used in the thesis. Then we define the dihedral group as the group of isometries of the euclidean plane which preserve a regular $n$-gon. We list all its elements and classify them into conjugacy classes. We also find an abstract characterization of the dihedral group and examine the structure of its subgroups. To conclude, we list some concrete mathematical and non-mathematical objects which have dihedral symmetry.

Keywords:mathematics, matematika

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back