Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Vizualizacija polarnega razcepa linearnih transformacij : diplomsko delo
ID
Hrvatin, Erik
(
Author
),
ID
Kuzman, Boštjan
(
Mentor
)
More about this mentor...
URL - Presentation file, Visit
http://pefprints.pef.uni-lj.si/id/eprint/4654
Image galllery
Abstract
V diplomskem delu obravnavamo polarni razcep za realne kvadratne matrike. Gre za produkt pozitivno definitne in ortogonalne matrike, s katerimi se tudi nekoliko podrobneje srečamo. V delu dokažemo, da polarni razcep vedno obstaja in je enolično določen za obrnljive matrike. Posebej izpeljemo ustrezne formule za ortogonalne in pozitivno definitne matrike dimenzije 2x2, prav tako pa tudi eksplicitno formulo za polarni razcep matrik dimenzije 2x2 s pomočjo katere lahko ugotovimo, kdaj ima matrika polarni razcep nad poljem racionalnih števil. Matrike si lahko predstavljamo tudi kot linearne transformacije ravnine, kar ilustriramo s slikami in interaktivnimi apleti, ki smo jih izdelali v programu GeoGebra.
Language:
Slovenian
Keywords:
matrika
,
pozitivno definitna matrika
,
ortogonalna matrika
,
polarni razcep
,
linearna transformacija
,
vizualizacija
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
PEF - Faculty of Education
Publisher:
[E. Hrvatin]
Year:
2017
Number of pages:
42 str.
PID:
20.500.12556/RUL-95153
UDC:
512.643.12(043.2)
COBISS.SI-ID:
11695433
Publication date in RUL:
19.09.2017
Views:
1623
Downloads:
318
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Visualisation of polar decomposition of linear transformations
Abstract:
The thesis aims at addressing the polar decomposition of a real square matrix. This is the product of a positive-definite matrix and an orthogonal matrix that are discussed in more detail as well. It is shown and proved in the thesis that the polar decomposition always exists and it is unique for invertible matrices. The adequate formula for orthogonal and positive-definite 2x2 matrices and the explicit formula for the polar decomposition of 2x2 matrices are derived. The latter can be used to help us determine when a polar decomposition of a matrix has rational coefficients. Matrices can also be seen as linear transformations of the plane. They can be visually represented with images or interactive applets that were developed using the GeoGebra program.
Keywords:
mathematics
,
matematika
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back