izpis_h1_title_alt

Vizualizacija polarnega razcepa linearnih transformacij : diplomsko delo
Hrvatin, Erik (Author), Kuzman, Boštjan (Mentor) More about this mentor... This link opens in a new window

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/id/eprint/4654 This link opens in a new window

Abstract
V diplomskem delu obravnavamo polarni razcep za realne kvadratne matrike. Gre za produkt pozitivno definitne in ortogonalne matrike, s katerimi se tudi nekoliko podrobneje srečamo. V delu dokažemo, da polarni razcep vedno obstaja in je enolično določen za obrnljive matrike. Posebej izpeljemo ustrezne formule za ortogonalne in pozitivno definitne matrike dimenzije 2x2, prav tako pa tudi eksplicitno formulo za polarni razcep matrik dimenzije 2x2 s pomočjo katere lahko ugotovimo, kdaj ima matrika polarni razcep nad poljem racionalnih števil. Matrike si lahko predstavljamo tudi kot linearne transformacije ravnine, kar ilustriramo s slikami in interaktivnimi apleti, ki smo jih izdelali v programu GeoGebra.

Language:Slovenian
Keywords:matrika, pozitivno definitna matrika, ortogonalna matrika, polarni razcep, linearna transformacija, vizualizacija
Work type:Bachelor thesis/paper (mb11)
Tipology:2.11 - Undergraduate Thesis
Organization:PEF - Faculty of Education
Year:2017
Publisher:[E. Hrvatin]
Number of pages:42 str.
UDC:512.643.12(043.2)
COBISS.SI-ID:11695433 Link is opened in a new window
Views:343
Downloads:149
Metadata:XML RDF-CHPDL DC-XML DC-RDF
 
Average score:(0 votes)
Your score:Voting is allowed only to logged in users.
:
Share:AddThis
AddThis uses cookies that require your consent. Edit consent...

Secondary language

Language:English
Title:Visualisation of polar decomposition of linear transformations
Abstract:
The thesis aims at addressing the polar decomposition of a real square matrix. This is the product of a positive-definite matrix and an orthogonal matrix that are discussed in more detail as well. It is shown and proved in the thesis that the polar decomposition always exists and it is unique for invertible matrices. The adequate formula for orthogonal and positive-definite 2x2 matrices and the explicit formula for the polar decomposition of 2x2 matrices are derived. The latter can be used to help us determine when a polar decomposition of a matrix has rational coefficients. Matrices can also be seen as linear transformations of the plane. They can be visually represented with images or interactive applets that were developed using the GeoGebra program.

Keywords:mathematics, matematika

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Comments

Leave comment

You have to log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back