Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Operatorski račun nad programskimi prostori
ID
SAJOVIC, ŽIGA
(
Author
),
ID
Robič, Borut
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(457,62 KB)
MD5: 4508EC59FF5C7DC478FD219CAA2B8F10
PID:
20.500.12556/rul/f1db278e-3076-4ba3-8ae5-23dede72375f
Image galllery
Abstract
V delu razvijemo algebraični jezik, ki predstavlja formalni račun za globoko učenje, in je hkrati model, v katerem je programe mogoče tako implementirati kot tudi preučevati. V ta namen razvijemo abstraktni računski model avtomatsko odvedljivih programov. V njem so programi elementi t. i. programskih prostorov. Programe gledamo kot preslikave končno-dimenzionalnega vektorskega prostora vase, imenovanega navidezni pomnilniški prostor. Navidezni pomnilniški prostor je algebra programov, torej algebraična podatkovna struktura (s katero je mogoče računati). Elementi navideznega pomnilniškega prostora pa omogočajo razvoj programov v neskončne tenzorske vrste. Na programskih prostorih definiramo operator odvajanja, s pomočjo njegovih potenc pa implementiramo posplošen operator premika in operator kompozicije programov. Tako konstruiran algebraični jezik je poln model globokega učenja. Omogoča takšen način izražanja programov, da že njihov zapis nudi teoretični vpogled vanje.
Language:
Slovenian
Keywords:
operatorska algebra
,
tenzorska algebra
,
nevronske mreže
,
globoko učenje
,
avtomatsko odvajanje
Work type:
Bachelor thesis/paper
Organization:
FRI - Faculty of Computer and Information Science
Year:
2017
PID:
20.500.12556/RUL-95108
Publication date in RUL:
14.09.2017
Views:
2721
Downloads:
453
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
SAJOVIC, ŽIGA, 2017,
Operatorski račun nad programskimi prostori
[online]. Bachelor’s thesis. [Accessed 4 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=95108
Copy citation
Share:
Secondary language
Language:
English
Title:
Operational calculus on program spaces
Abstract:
In this work we develop an algebraic language that represents a formal calculus for deep learning and is, at the same time a model which enables implementations and investigations of programs. To this purpose, we develop an abstract computational model of automatically differentiable programs. In the model, programs are elements of op. cit. programming spaces. Programs are viewed as maps from a finite-dimensional vector space to itself op. cit. virtual memory space. Virtual memory space is an algebra of programs, an algebraic data structure (one can calculate with). The elements of the virtual memory space give the expansion of a program into an infinite tensor series. We define a differential operator on programming spaces and, using its powers, implement the general shift operator and the operator of program composition. The algebraic language constructed in this way is a complete model of deep learning. It enables us to express programs in such a way, that their properties may be derived from their source codes.
Keywords:
operator algebra
,
tensor algebra
,
neural networks
,
deep learning
,
automatic differentiation
Similar documents
Similar works from RUL:
Deep learning methods and their applications
Analysis of infrared spectra using deep neural networks
Use of deep learning in kitchen appliances to aid food preparation
Automatic text summarization of Slovene texts using deep neural networks
An experimental evaluation of adversarial examples and methods of defense
Similar works from other Slovenian collections:
Zaznavanje sentimenta v novicah z globokimi nevronskimi mrežami
Forecasting probability of default with neural networks
Predicting the failures of products using deep learning methods
Person activity recognition from image sequence using convolutional neural networks
Person age estimation based on digital images using convolutional neural networks
Back