izpis_h1_title_alt

Napovedovanje kakovosti povezav v brezžičnih omrežjih
ID GALE, TIMOTEJ (Author), ID Curk, Tomaž (Mentor) More about this mentor... This link opens in a new window, ID Fortuna, Carolina (Comentor)

.pdfPDF - Presentation file, Download (1,90 MB)
MD5: 5C6E0207FEF51894F4C8354F96BB7929
PID: 20.500.12556/rul/64e8b7d7-0d13-4a50-bbba-603965a9504e

Abstract
Število brezžičnih naprav danes hitro narašča, posledično se viša stopnja nasičenosti radijskega spektra, saj soobstoj številnih tehnologij povzroča motnje v omrežjih. Zmogljivost obstoječih tehnologij lahko povečamo z razvojem natančnejših cenilk kakovosti povezav. V diplomskem delu predlagamo, uvedemo in ovrednotimo nov pristop za razvoj sistema za napovedovanje kakovosti povezav, ki temelji na gradnji in izpeljavi značilk. Po predhodni analizi množic podatkov o paketih Wi-Fi in Sigfox tvorimo nove značilke in izgradimo klasifikacijski model za napovedovanje kakovosti povezave. Predlagani modeli se razlikujejo glede na točnost in popolnost napovedovanja posameznih vrst povezav, predvsem povezav srednje kvalitete. Najboljši model pravilno uvrsti 95% testnih primerov, kar je bistveno izboljšanje v primerjavi s 60% točnostjo večinskega klasifikatorja.

Language:English
Keywords:podatkovno rudarjenje, kakovost povezave, brezžično omrežje, modeliranje, napovedovanje, cenilka
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2017
PID:20.500.12556/RUL-95071 This link opens in a new window
Publication date in RUL:13.09.2017
Views:1439
Downloads:692
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Link Quality Prediction in Wireless Networks
Abstract:
The number of wireless devices is increasing rapidly. The wireless spectrum is thus becoming crowded as various technologies co-exist and interfere with each other. One possible way to improve the performance of existing technologies is to develop accurate link quality estimators. In this thesis, we propose, implement and evaluate a novel approach to link quality prediction based on feature engineering. Following a preliminary analysis of a dataset with Wi-Fi packet traces and a dataset with Sigfox packet traces, we developed new features and built a classification model for link quality prediction. The proposed models vary in performance with respect to accuracy and completeness of predicting different types of links, mainly links of intermediate quality. The best proposed model achieved 95% classification accuracy, which is a substantial improvement compared to the 60% accuracy of the majority classifier.

Keywords:data mining, link quality, wireless network, modeling, prediction, estimator

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back