Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Mehanske lastnosti 3D-tiskanega izdelka iz najlona
ID
Markovič, Martin
(
Author
),
ID
Valentinčič, Joško
(
Mentor
)
More about this mentor...
,
ID
Lebar, Andrej
(
Comentor
)
PDF - Presentation file,
Download
(2,99 MB)
MD5: BEE06BC2DF17769D8C376F9EE6C4FBA6
PID:
20.500.12556/rul/e2d6464f-fa0a-4c0d-816b-4efe71396757
Image galllery
Abstract
Pri 3D-tiskanju poznamo več različnih postopkov. V našem primeru smo pri preizkusih uporabili tehnologijo FDM ali metodo ciljnega nalaganja. Zanimalo nas je, kako obdelovalna parametra, kot sta stopnja notranje zapolnitve in kot zapolnitve, vplivata na udarno žilavost in udarno delo izdelkov in katere parametre izbrati v primeru, če želimo obdržati dobro udarno odpornost in uporabiti najmanjšo količino materiala. Pri Charpyjevemu preizkusu smo na 3D-tiskanih preizkušancih izvedli udarni preizkus ter odčitali udarno delo in nato izračunali udarno žilavost. Ugotovili smo, da imajo izdelki s kotom notranje strukture 90° in 50 % notranjo zapolnjenostjo najvišjo vrednost udarnega dela. Izdelki s stopnjo zapolnjenosti 0 % imajo najvišje vrednosti udarne žilavosti, zaradi česar jih lahko upravičeno obravnavamo kot izdelke s parametri, ki imajo najboljšo udarno odpornost glede na količino uporabljenega materiala.
Language:
Slovenian
Keywords:
3D-tiskanje
,
udarno delo
,
udarna žilavost
,
Charpyjev udarni preizkus
,
poliamid-najlon
,
stopnja zapolnitve
,
kot zapolnitve
Work type:
Bachelor thesis/paper
Organization:
FS - Faculty of Mechanical Engineering
Year:
2017
PID:
20.500.12556/RUL-94935
Publication date in RUL:
11.09.2017
Views:
2348
Downloads:
476
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
MARKOVIČ, Martin, 2017,
Mehanske lastnosti 3D-tiskanega izdelka iz najlona
[online]. Bachelor’s thesis. [Accessed 4 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=94935
Copy citation
Share:
Secondary language
Language:
English
Title:
Mechanical properties of 3D-printed product made from nylon
Abstract:
There are several different technologies of 3D printing. In our experiment, we studied FDM method of 3D-printing and the differences in impact work and impact toughness that appear in changing the fill density and angle of inner filling. We also studied which of the named parameters are the best for minimum consumption of material and for the best impact properties. Mechanical properties were tested with the Charpy impact test. Based on the Charpy test, we scanned impact work and calculated impact toughness. Findings suggested that specimens with an inner filling of a 90° angle and 50% fill density use the highest amount of impact work. Specimens with 0% fill density have the highest impact toughness and can be interpreted as specimens with best impact properties for minimum consumption of material.
Keywords:
3D-printing
,
impact work
,
impact toughness
,
Charpy impact test
,
polyamide-nylon
,
fill density
,
angle of inner filling
Similar documents
Similar works from RUL:
Part of speech tagging of slovene language using deep neural networks
Superposition and compression of deep neutral networks
Object detection and classification in aquatic environment using convolutional neural networks
Analysis of infrared spectra using deep neural networks
Automatic text summarization of Slovene texts using deep neural networks
Similar works from other Slovenian collections:
Predicting GPS tracks with deep neural networks
Comparison of different deep neural network learning algorithms in autonomous driving
Zaznavanje sentimenta v novicah z globokimi nevronskimi mrežami
The preparation of photos' dataset and its classification using deep neural networks
Time series classification based on convolutional neural networks
Back