Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Avtomatsko podnaslavljanje slik z globokimi nevronskimi mrežami
ID
BAUMKIRHER, URBAN
(
Author
),
ID
Robnik Šikonja, Marko
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(5,18 MB)
MD5: 6EA2875D724F882A9A50FD389F231080
PID:
20.500.12556/rul/a442de34-1f47-449f-9796-a4375aab932a
Image galllery
Abstract
V diplomskem delu smo implementirali globoko nevronsko mrežo, ki smo jo naučili generirati stavčni opis slike. Mreža povezuje področje računalniškega vida in obdelave naravnega jezika. Sledili smo že objavljenim arhitekturam in arhitekturo implementirali s knjižnico Keras v jeziku Python. Podatke smo pridobili s spletne podatkovne zbirke MS COCO iz leta 2014. Naša rešitev implementira dvodelni model in uporablja globoke konvolucijske, rekurenčne in polno povezane nevronske mreže. Za obdelavo in zajem značilk slik smo uporabili arhitekturo VGG16. Besede smo predstavili z vektorsko vložitvijo GloVe. Model smo naučili na podatkovni zbirki 82.783 slik in testirali s 40.504 slikami ter opisi. Ocenili smo ga z mero BLEU in dosegli vrednost 49.0 ter klasifikacijsko točnost 60 %. Najboljših objavljenih rezultatov nismo dosegli, a obstaja še veliko možnosti za izboljšave.
Language:
Slovenian
Keywords:
opisovanje slik
,
označevanje slik
,
strojno učenje
,
globoko učenje
,
nevronske mreže
,
konvolucijske nevronske mreže
,
rekurenčne nevronske mreže
,
LSTM mreže
Work type:
Bachelor thesis/paper
Organization:
FRI - Faculty of Computer and Information Science
Year:
2017
PID:
20.500.12556/RUL-94485
Publication date in RUL:
31.08.2017
Views:
4970
Downloads:
656
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
BAUMKIRHER, URBAN, 2017,
Avtomatsko podnaslavljanje slik z globokimi nevronskimi mrežami
[online]. Bachelor’s thesis. [Accessed 25 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=94485
Copy citation
Share:
Secondary language
Language:
English
Title:
Automatic image captioning using deep neural networks
Abstract:
We implemented a deep neural network, which we trained to generate image captions. The neural network connects computer vision and natural language processing. We followed existing architectures for the same problem and implemented our architecture with Keras library in Python. We retrieved data from an online data collection MS COCO. Our solution implements a bimodal architecture and uses deep convolutional, recurrent and fully connected neural networks. For processing and collecting image features we used the VGG16 architecture. We used GloVe embeddings for word representation. The final model was trained on a collection of 82.783 and tested on 40.504 images and their descriptions. We evaluated the model with the BLEU score metric and obtained a value of 49.0 and classification accuracy of 60 %. Current state-of-the-art models were not surpassed, but we see many possibilities for improvements.
Keywords:
image captioning
,
machine learning
,
deep learning
,
neural networks
,
convolutional neural networks
,
recurrent neural networks
,
LSTM neural networks
Similar documents
Similar works from RUL:
Recognising people’s age from face images with convolutional neural networks
Detekcija uhljev s konvolucijskimi nevronskimi mrežami
Iris recognition using deep learning
Automatic classification of buildings with deep learning
Automatic image captioning using deep neural networks
Similar works from other Slovenian collections:
Person age estimation based on digital images using convolutional neural networks
Person activity recognition from image sequence using convolutional neural networks
Food recognition from digital images using convolutional neural networks
Recognition of human emotions on digital images using convolutional neural networks
Time series classification based on convolutional neural networks
Back