Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Analiza generalizacije semantične segmentacije z globokimi zbirkami filtrov
ID
Prelevikj, Marko
(
Author
),
ID
Kristan, Matej
(
Mentor
)
More about this mentor...
,
ID
Hlavač, Vaclav
(
Comentor
)
PDF - Presentation file,
Download
(2,50 MB)
MD5: 78231E9E28CB60C8C51B3F64EDB3FF21
PID:
20.500.12556/rul/d07397e6-2ea2-4bc3-adeb-261895d915cd
Image galllery
Abstract
Mobilni robotski sistemi, ki so sposobni avtonomne navigacije v nestrukturiranih okoljih, so odvisni od njihovih modulih vida, da bi lahko bili sposobni se navigirati čez okolje. Moduli vida priskrbijo percepcijo okolice, in pogosto morajo identificirati določene predmete, ki nas zanimajo. Identifikacija nastane tako da določene segmente slik klasificira v enem izmed vnaprej naučenih razredov. Na področju računalniškega vida obstaja veliko postopkov semantične segmentacije, ki poročajo izjemne rezultate. Vendar so ti postopki naučeni samo na določenih podatkovnih zbirkah, ki niso nujno medsebojno odvisni z različnimi prizorišči, ki jih mobilni robot opazi. Da bi preverili sposobnost podatkovne zbirke prenesti svoje znanje na novi domeni bomo preiskovali kvaliteto generalizacije njenih razredov. Preverili bomo prenos znanja specifičnega postopka semantične segmentacije, ki smo ga prilagodili našim potrebam.
Language:
English
Keywords:
semantična segmentacija
,
konvolucijske nevronske mreže
,
zaznavanje tekstur
,
prenos znanja
Work type:
Bachelor thesis/paper
Organization:
FRI - Faculty of Computer and Information Science
Year:
2017
PID:
20.500.12556/RUL-92730
Publication date in RUL:
30.06.2017
Views:
1706
Downloads:
417
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
PRELEVIKJ, Marko, 2017,
Analiza generalizacije semantične segmentacije z globokimi zbirkami filtrov
[online]. Bachelor’s thesis. [Accessed 2 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=92730
Copy citation
Share:
Secondary language
Language:
Slovenian
Title:
Generalization analysis of semantic segmentation with deep filter banks
Abstract:
Mobile robotic systems capable of autonomous navigation in non-structured environments depend on their vision module in order to safely navigate through the environment. The vision module provides perception of the surrounding area and it is often required to identify particular objects of interest, which is done by classifying image segments into pre-learned semantic classes. There are many methods which provide remarkable semantic segmentation results, but unfortunately only on specific datasets, which are not necessarily correlated to the scenes observed by a mobile robot. To verify the dataset's capability of transferring knowledge to a new domain we explore how well it generalises its classes. We examine the transfer of knowledge on a specific semantic segmentation method, which we adjust to best fit our needs.
Keywords:
semantic segmentation
,
transfer of knowledge
,
convolutional neural networks
,
texture recognition
Similar documents
Similar works from RUL:
Object detection and classification in aquatic environment using convolutional neural networks
Semantic segmentation of images for indoor place recognition
Siamese neural network for motion detection in video sequences
Segmentacija rok za obogateno resničnost
A neural network for trench detection based on Lidar elevation model
Similar works from other Slovenian collections:
Modeliranje napovedovanja proizvodnje električne energije iz sončnih elektrarn
Forecasting of electricity from solar plants of DEM company
ǂThe ǂimpact of sorting of photovoltaic moduls on energy production of photovoltaic systems
Ekonomska nihanja pri postavitvi sončne elektrarne
Analiza proizvodnje električne energije v Gorenjskih elektrarnah v letu 2017
Back