izpis_h1_title_alt

ANALIZA UČINKOVITOSTI OPTIMIZACIJSKIH METOD IN NJIHOVIH KOMBINACIJ V PROGRAMU MATLAB
ID POGAČNIK, JOŽE (Author), ID Atanasijević-Kunc, Maja (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (6,80 MB)
MD5: 94802085685412BC5CC424452D5CE249
PID: 20.500.12556/rul/2330847e-c330-4678-a010-1bef262f1a1c

Abstract
Optimizacija je metoda, ki omogoča iskanje najboljše rešitve zastavljenega problema. Srečujemo jo na vseh področjih človekovih aktivnosti. Velikega pomena je tudi na področju avtomatike. V okviru pričujočega dela smo preučili nekatere programsko podprte možnosti, ki so pripravljene v okviru obeh orodij programa MATLAB. Gre za tako imenovano Orodje za optimizacijo in Orodje za globalno optimizacijo. Med številnimi možnostmi, ki so v okviru omenjenih orodij na voljo, smo opisali in testirali dve funkciji za globalno in dve za lokalno optimizacijo ter dve hibridni kombinaciji. V drugem poglavju smo opisali glavne značilnosti in oblike klica posameznih funkcij. Izbrali smo funkciji, ki omogočata globalno optimizacijo z metodo, imenovano genetski algoritem (ga) ter metodo simuliranega ohlajanja (simulannealbnd). Sledi pa tudi opis lokalnih funkcij fminsearch (le-ta je na voljo že v samem MATLABu) ter fmincon. Prva omogoča neomejeno optimizacijo, druga pa omejeno. To pomeni, da lahko omejimo področje preiskovanja upoštevajoč poznavanje problema. Orodji za optimizacijo omogočata tudi nekatere kombinacije klicev posameznih funkcij. V pričujočem delu smo preizkušali dve možnosti. V tretjem poglavju smo predstavili rezultate optimizacije za tri skupine problemov in sicer matematične funkcije, probleme modeliranja in načrtovanja vodenja. Da bi bili rezultati čim bolje urejeni in pregledni, smo zgradili grafični vmesnik in ga povezali z orodjem LABI (Laboratorij matematičnih modelov in multivariabilnih sistemov) v okviru katerega so na voljo tudi številne funkcije za analizo dinamičnih sistemov. Uporabnik lahko opazuje potek posameznih optimizacijskih problemov in končne rezultate ter izvaja njihovo analizo.   Četrto poglavje: Zaključek povzema pomembnejše ugotovitve, med katerimi velja omeniti naslednje: - metode lokalne optimizacije so uspešne v primeru, ko lahko relativno dobro ocenimo bližino optimuma in število parametrov, ki so podvrženi optimizaciji ni veliko, - v primeru kompleksnih problemov je optimiranje bolje pričeti z eno od globalnih metod, čeprav le-te praviloma ne najdejo pravega optimuma, - če je v optimiranje vključena simulacija, moramo biti pozorni na numerično stabilnost rešitve in stabilnost sistema, - izreden potencial imajo hibridne oziroma kombinirane metode, kjer optimizacijo pričenjamo z eno od globalnih metod, ki ji sledi uporaba ene od lokalnih metod, - tudi rezultati kombiniranih rešitev niso enolični.

Language:Slovenian
Keywords:optimizacija, globalna optimizacija, hibridna optimizacija, dinamični sistemi, matematično modeliranje, načrtovanje vodenja
Work type:Bachelor thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2017
PID:20.500.12556/RUL-92700 This link opens in a new window
Publication date in RUL:28.06.2017
Views:2239
Downloads:958
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:OPTIMIZATION METHODS EFFICACY ANALYSIS IN PROGRAM MATLAB
Abstract:
Optimization is a method to search for the best solution of the given problem. It can be found in all areas of human activity. One of the great importance it is also in the field of automation. In the context of the present work we examined some software-based options, that are prepared with two MATLAB tools. These are so-called Optimization toolbox and Global optimization toolbox. Among many options, that are available among many mentioned toolboxes, we examined and tested two functions for global optimization, two for local optimization and two for hybrid realizations. In the second chapter, we described main features and forms of individual call functions call. Presented are two functions that allow us global optimization. These are a method called genetic algorithm (ga) and method called simulated annealing (simulannealbnd). We also described local functions fminsearch (it is available in basic MATLAB) and fmincon. Function fminsearch allows unlimited optimization, while function fmincon realizes limited optimization. This means that we can limit the scope of investigation according to the knowledge of the problem. Optimization toolboxes allow also some combination calls of individual functions. We tested two options in present work. In the third chapter, we presented results of the optimization of three groups of problems through mathematical functions, problems of modelling and control design. To gain orderliness and transparency of obtained results we have built a graphical interface and connected it with the toolbox LABI (Laboratory of mathematical models and multivariable systems). Number of functions for analyzing dynamic systems are also available inside LABI. User can observe course of individual optimization problems, final results and carry out their analysis.   Chapter four (Conclusion) summarizes major findings, among which we have to mention the following: - local optimization methods are effective in cases where we can do relatively good estimation of optimum proximity and the number of optimization parameters is small. - in case of complex optimization problems it is better to start with one of the global methods, which generally do not find a real optimum, - if simulation is integrated in optimization, we have to pay attention to the stability of numerical solution and stability of the system, - there is extraordinary potential for hybrid or combined methods, where we start optimization with one of the global methods followed by one of local methods, - results of the combined solution are not unique.

Keywords:optimization, global optimization, dynamical systems, mathematical modelling, control design

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back