izpis_h1_title_alt

Uporaba kontinuitetnih makroskopskih modelov za optimalno vodenje prometa : doktorska disertacija
ID Strnad, Irena (Author), ID Žura, Marijan (Mentor) More about this mentor... This link opens in a new window, ID Kramar Fijavž, Marjeta (Co-mentor)

.pdfPDF - Presentation file, Download (80,70 MB)
MD5: 99CC84B7F46FF567361FF65830BAF7CE
PID: 20.500.12556/rul/ba38a195-675d-42bb-b879-2b55d9115260

Abstract
Sodoben življenjski slog zahteva visoko stopnjo mobilnosti, ki se odraža v povečanih prometnih obremenitvah. Na nekaterih najbolj obremenjenih avtocestnih odsekih dnevno prihaja do zastojev, kar daje vodenju prometačedalje izrazitejšo vlogo. Zaradi velikih zgostitev prometa se v okolici ozkih grlpojavljajo udarni valovi, ki običajno potujejo protitočno in povzročajo nenadna povečanja gostote prometnega toka ter posledično nenadna zmanjšanja srednje prostorske hitrosti prometnega toka.Udarni valovi povzročajo negativne ekološke in ekonomske vplive, z njimi povezani zastoji pa tudi potencialno nevarnost za prometne nesreče, predvsem v obliki naletnih trčenj. Namen doktorske disertacije jepredlagati učinkovitejše vodenje prometnega tokas spremenljivimi omejitvami hitrosti, ki temelji na zmanjšanju intenzivnosti in pogostosti pojavljanja udarnih valov. Najprej smo kontinuitetne makroskopske modele prometnega tokaovrednotili in izbrali najustreznejšega glede na kvalitativno sposobnost opisovanja prometnega toka. Z ustrezno numerično metodo smo nato rešili sistem parcialnih diferencialnih enačb izbranega kontinuitetnega makroskopskega modela prometnega toka in tako napovedali gostoto prometnega toka v prostoru in času ter z njo tudi udarne valove.Pri tem smo upoštevali empirično preverjeno odvisnost med srednjo prostorsko hitrostjo in gostoto prometnega toka. Na podlagi matematične teorije optimalnega vodenjasmo z uporabo diferencialne evolucije določili omejitve hitrosti, s katerimi v gostoti prometnega toka v prostoru in času zmanjšamo oscilacije, kar neposredno pomeni zmanjšano intenziteto in/ali pogostost pojavljanja udarnih valov. Ustreznost določenih omejitev hitrosti smo na koncu preverili še z mikroskopsko simulacijo in prometno-varnostno analizo.

Language:Slovenian
Keywords:grajeno okolje, gradbeništvo, disertacije, kontinuitetni makroskopski model, spremenljive omejitve hitrosti, udarni val, optimalno vodenje, kriterijska funkcija, mikroskopska simulacija, prometna varnost, konflikt
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FGG - Faculty of Civil and Geodetic Engineering
Place of publishing:Ljubljana
Publisher:[I. Strnad]
Year:2017
Number of pages:XXIV, 124 str.
PID:20.500.12556/RUL-92400 This link opens in a new window
UDC:004.42:519.61./64:656.1(043)
COBISS.SI-ID:8079457 This link opens in a new window
Publication date in RUL:25.07.2017
Views:3216
Downloads:681
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Using continuity macroscopic models for optimal traffic control : doctoral thesis
Abstract:
Modern lifestyle requires high degree of mobility, which instigates increased traffic volumes.Some of the motorway sections with the heaviest traffic volumes are prone to congestions on daily basis, highlighting the importance of the traffic management and control systems. Decreased capacity of the bottleneck can lead to the onset of the shockwave, which travels upstream and causes sudden increase in traffic density and hence a sudden decrease ofspace mean speed. The consequences of shockwaves are negative from both ecological and economic perspective, moreover, sudden oscillations in travel speed represent a potential risk for rear-end collisions.The main aim of this dissertation thesis is to establish more effective traffic control with variable speed limits based on the reduction of shockwaves. First, we have validated the existent continuum macroscopic models oftraffic flowand chosen the most appropriate model depending on its descriptive ability of modelingdynamics. Using a suitable numerical method we then solved the system of partial differential equations of the selected continuum macroscopic traffic flow model, which results in the prediction of the traffic density in time and space and thereby also of the shockwaves. The equilibrium speed-density curve used in the continuum macroscopic flow modelwas based on the empirical data. We solved the corresponding optimal control problem with criteria of reducing the oscillations of the traffic density in time and spaceusing differential evolution algorithm. The result of the method is a set of variable speed limits which lead toshockwaves reduction or elimination. Thus determined variable speed limits were additionally validated with microscopic simulation and traffic-safety analysis.

Keywords:building environment, civil engineering, thesis, continuum macroscopic model, variable speed limit, shockwave, optimal control, cost function, microscopic simulation, traffic safety, conflict

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back