Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Prototip sistema za zajem in klasifikacijo dojenčkovega joka
ID
Saftić, Saša
(
Author
),
ID
Ciglarič, Mojca
(
Mentor
)
More about this mentor...
,
ID
Zupan, Blaž
(
Comentor
)
PDF - Presentation file,
Download
(2,84 MB)
MD5: 0F2E8E447A188C5F17D4F9A36B7C8FFB
PID:
20.500.12556/rul/d5cadfb0-4b50-45ac-b7db-70ebbac02d93
Image galllery
Abstract
V tem delu se ukvarjamo z večrazredno klasifikacijo dojenčkovega joka in raziskovanjem povezave med starostjo dojenčka in natančnostjo klasifikacije. Prav tako se ukvarjamo z varnim shranjevanjem in obdelavo podatkov v oblaku. Primerjali smo več standarnih modelov za večrazredno klasifikacijo in klasifikacijo z rekurenčnimi nevronskimi mrežami. Natančnost klasifikacije smo preverili na podatkih različno starih otrok. Za shranjevanje in obdelavo podatkov smo uporabili Rest Django API in odptokodno oblačno platformo OpenStack. Rezultati dela kažejo, da lahko s pomočjo večrazredne klasifikacije razlikujemo med razredi joka. Povezave med starostjo otroka in natančnostjo klasifikacije nismo opazili. Django Rest API in OpenStack platformi sta se izkazali za dobro orodje za shranjevanje in obdelavo podatkov v oblaku.
Language:
Slovenian
Keywords:
dojenčkov jok
,
zajem podatkov
,
analiza zvoka
,
odkrivanje značilk
,
klasifikacija
,
obdelava podatkov v oblaku
,
oblačna varnost
Work type:
Master's thesis/paper
Organization:
FRI - Faculty of Computer and Information Science
Year:
2017
PID:
20.500.12556/RUL-91508
Publication date in RUL:
12.04.2017
Views:
2165
Downloads:
555
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
SAFTIĆ, Saša, 2017,
Prototip sistema za zajem in klasifikacijo dojenčkovega joka
[online]. Master’s thesis. [Accessed 25 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=91508
Copy citation
Share:
Secondary language
Language:
English
Title:
System for audio capture and classification of baby cry samples
Abstract:
We explore multiclass classification of infants' cries and the relation between the age of the infant and the accuracy of classification. Additionally we explore secure cloud storage and cloud data processing. We compare several state-of-the-art multiclass classification models with recurrent neural networks. Classification accuracy was obtained on data from infants of various ages. For data storage and processing we used the Django Rest API and the opensource cloud platform OpenStack. Multiclass classification models successfully differentiated between different classes of crying, but no age effect has been found. We have demonstrated the aptness of the Django Rest API and OpenStack platform for data storing and processing in the cloud.
Keywords:
infant cry
,
data acquisition
,
audio analysis
,
feature extraction
,
classification
,
cloud processing
,
cloud security
Similar documents
Similar works from RUL:
Searching for similar works...
Similar works from other Slovenian collections:
Back