Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Vpliv poravnave na uspešnost razpoznavanja uhljev
ID
RIBIČ, METOD
(
Author
),
ID
Peer, Peter
(
Mentor
)
More about this mentor...
,
ID
Štruc, Vitomir
(
Comentor
)
PDF - Presentation file,
Download
(5,87 MB)
MD5: 5C83EDA20AE45B523250690E3D10A937
PID:
20.500.12556/rul/837c83e0-823d-4f0c-b4a2-ca98d7cc65ac
Image galllery
Abstract
Uhlji kot biometrična modalnost so postali pomemben vir za samodejno razpoznavo oseb, predvsem v scenarijih nadzornih aplikacij, kjer se obraz ne vidi frontalno. V preteklih letih je priljubljenost metod lokalnih deskriptorjev narasla zaradi njihove invariantnosti na osvetlitev in zakrivanje, vendar pa te metode za vhodne podatke zahtevajo poravnane in vnaprej obdelane slike, kar pa lahko predstavlja velik problem zaradi kota, pod katerim so bile slike zajete. V tem diplomskem delu smo testirali, kako poravnava uhljev z metodo soglasja naključnega vzorca (RANSAC) in metodo kaskadne pozicijske regresije (CPR) vpliva na razpoznavo oseb na podlagi uhljev. Poravnava se je izvajala na podatkovni bazi uhljev AWE. Dokazali smo, da poravnava uhljev pozitivno vpliva na razpoznavo samo v primeru, ko so obravnavane slike zajete pod majhnim nagibom in odklonom. Slike, zajete pod večjim nagibom in odklonom, pa so po naših ugotovitvah prezahtevne za poravnavo in poslabšajo rezultate razpoznave, zaradi česar bi bilo potrebno uporabiti drugačne pristope za poravnavo.
Language:
Slovenian
Keywords:
računalniški vid
,
biometrija
,
razpoznavanje
,
poravnava
,
uhlji
Work type:
Bachelor thesis/paper
Organization:
FRI - Faculty of Computer and Information Science
Year:
2016
PID:
20.500.12556/RUL-91248
Publication date in RUL:
27.03.2017
Views:
1265
Downloads:
554
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Influence of alignment on ear recognition
Abstract:
Ear as a biometric modality presents a viable source for automatic human recognition especially in surveillance scenarios where face is not seen frontally. In recent years local description methods have been gaining on popularity due to their invariance to illumination and occlusion. However, these methods require that images are well aligned and preprocessed as good as possible. This causes one of the greatest challenges of ear recognition: sensitivity to pose variations. In this paper we test the influence of alignment on recognition performance on images from recently presented Annotated Web Ears dataset with alignment methods Random sample consensus (RANSAC) and Cascaded Pose Regression (CPR). We prove that alignment improves recognition rate but only on images with small angle on roll and yaw axis. On other pictures RANSAC and CPR fails to align ears and recognition rate is therefore lower versus unaligned pictures. Those pictures should be addressed with more advanced alignment methods in order to improve recognition rate.
Keywords:
computer vision
,
biometry
,
recognition
,
alignment
,
ears
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back