Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Ocenjevanje esejev s strojnim učenjem
ID
PERNUŠ, TJAŠA
(
Author
),
ID
Kononenko, Igor
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(1,35 MB)
MD5: 4F426D47089CA8624A06B3EF57E897C7
PID:
20.500.12556/rul/c66b39d6-1840-4938-b4d8-6a9d3a97b9e5
Image galllery
Abstract
Diplomska naloga se dotika področja strojnega učenja, bolj podrobno pa še področja globokih nevronskih mrež. Cilj naše diplomske naloge je bila primerjava različnih pristopov strojnega učenja pri avtomatskem napovedovanju ocen esejev ter oceniti uspešnost globokih nevronskih mrež v primerjavi z ostalimi modeli. Pri gradnji globokih nevronskih mrež je bila izvedena tudi gradnja globoke nevronske mreže z osnovnimi eseji, ki so razbiti na n-terke, vsaka n-terka pa je predstavljala posamezni atribut. Za primerjavo je bilo uporabljeno okolje R, kjer je bilo izvedeno testiranje in primerjava modelov. Izdelanih je bilo več različnih modelov istega tipa, nato pa za posamezni tip izbran najbolj uspešen, ki je bil nato uporabljen v končni primerjavi različnih tipov modelov.
Language:
Slovenian
Keywords:
ocenjevanje esejev
,
strojno učenje
,
globoke nevronske mreže
,
nevronska mreža
,
Friedman-Nemenyi test
Work type:
Undergraduate thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2016
PID:
20.500.12556/RUL-91210
Publication date in RUL:
24.03.2017
Views:
3335
Downloads:
519
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
PERNUŠ, TJAŠA, 2016,
Ocenjevanje esejev s strojnim učenjem
[online]. Bachelor’s thesis. [Accessed 6 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=91210
Copy citation
Share:
Secondary language
Language:
English
Title:
Essay evaluation with machine learning
Abstract:
The diploma thesis covers the field of machine learning. In more detail it covers the field of deep neural networks. The goal of our thesis was comparing different approaches of machine learning for building models for automated essay scoring and to evaluate the success of deep neural networks compared to other models. For building models we have used already extracted attributes, but for the deep neural network we have also used original essays, represented by the three attributes, that represent the relationships in a sentence. For comparing we have used the R environment, where we have built, tested and compared the models. Many different models of the same kind were built, from which the best was chosen for further comparison with models of different types.
Keywords:
essay scoring
,
machine learning
,
Deep neural network
,
neural network
,
Friedman-Nemenyi test
Similar documents
Similar works from RUL:
Computer Speech Recognition in Slovene Language
Auto-contouring of organs-at-risk in medical images for radiotherapy planning
Prediction of stress of Slovenian words with machine learning methods
Deep models for image coloring
Regression models for predicting cerebrospinal fluid biomarkers of Alzheimer's disease
Similar works from other Slovenian collections:
Predicting GPS tracks with deep neural networks
Primerjalna študija algoritmov za napoved prodaje izdelkov
Comparing adversarial example attacks on deep neural networks and defensive approaches
Predicting the failures of products using deep learning methods
Confidence estimation in deep neural networks
Back