Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Določanje sentimenta slovenskim spletnim komentarjem s pomočjo strojnega učenja
ID
KADUNC, KLEMEN
(
Author
),
ID
Robnik Šikonja, Marko
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(3,62 MB)
MD5: C574DD44FA4FCDDD8A7A8491013BA59C
PID:
20.500.12556/rul/0a85bc6b-f67b-4577-877f-1d508be49077
Image galllery
Abstract
Cilj diplomske naloge je izdelava orodja za sentimentno analizo besedila, konkretneje uporabniških komentarjev. Preizkusili smo več metod strojnega učenja in več metod za predobdelavo besedil, še posebej tistih za spletna besedila. Kot najboljši klasifikator se je izkazal multinomski naivni Bayes. Za izboljšanje klasifikatorja smo pripravili slovenski slovar sentimenta - seznam besed in besednih zvez s pozitivno in negativno konotacijo. Za osnovo smo vzeli angleški slovar sentimentnih besed ter ga ročno prevedli v slovenščino. Analizo sentimenta smo izvajali na ročno označenem korpusu uporabniških komentarjev, ki smo jih izluščili iz nekaterih najbolj obiskanih slovenskih novičarskih portalov. Slovar ter označen korpus uporabniških komentarjev sta naša glavna prispevka k analizi sentimenta za slovenski jezik.
Language:
Slovenian
Keywords:
analiza sentimenta
,
strojno učenje
,
rudarjenje mnenj
,
obdelava naravnega jezika
,
klasifikacija
,
označevanje besedil
,
slovar sentimenta
,
slovenski jezik
,
predobdelava besedila
,
uporabniško generirane vsebine
Work type:
Undergraduate thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2016
PID:
20.500.12556/RUL-91182
Publication date in RUL:
24.03.2017
Views:
3437
Downloads:
659
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
KADUNC, KLEMEN, 2016,
Določanje sentimenta slovenskim spletnim komentarjem s pomočjo strojnega učenja
[online]. Bachelor’s thesis. [Accessed 2 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=91182
Copy citation
Share:
Secondary language
Language:
English
Title:
Using machine learning for sentiment analysis of Slovene web commentaries
Abstract:
The purpose of this work is to develop a tool for sentiment analysis of user comments. Several machine learning classifiers were tested and multinomial naive Bayes turned out to be the best predictor. We tried several preprocessing techniques, especially those for web texts. The classifier was improved with a Slovene sentiment lexicon, which is a list of words and set phrases with a positive and a negative connotation. An English sentiment lexicon was manually translated into Slovene. The analysed corpus of user comments was manually annotated by three annotators; its entries were selected from some of the most visited Slovene news portals. Both the lexicon and the annotated corpus of user comments are the main contributions of this work.
Keywords:
sentiment analysis
,
machine learning
,
opinion mining
,
natural language processing
,
classification
,
annotating text
,
opinion lexicon
,
Slovenian language
,
text preprocessing
,
user generated content
Similar documents
Similar works from RUL:
Livestock-associated methicillin-resistant Staphylococcus aureus
QAC resistance genes in ESBL-producing E. coli isolated from patients with lower respiratory tract infections in the Central Slovenia region—a21-year survey
Genomic insights into Salmonella Choleraesuis var. Kunzendorf outbreak reveal possible interspecies transmission
Escherichia coli bacteriocins
Benzamide derivatives targeting the cell division protein FtsZ
Similar works from other Slovenian collections:
Genomic insights into the Mycobacterium kansasii complex
Non O157:H7 avian pathogenic Shiga toxin-producing Escherichia coli isolated from lesions on broiler chickens in Brazil
Enterohemorrhagic Escherichia coli O157
Cytotoxic factor secreted by Escherichia coli associated with sepsis facilitates transcytosis through human umbilical vein endothelial cell monolayers
Obtenção de peptídeos com capacidade inibitória da ação citotoxigênica das toxinas Stx de Escherichia colia partir de bibliotecas de phage display
Back