izpis_h1_title_alt

Strategije za uravnoteženo izbiro retrospektivnih podatkov za simulacijo prospektivnih raziskav : diplomsko delo
ID Smodiš, Aleš (Author), ID Bratko, Ivan (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (337,58 KB)
MD5: 6F16E31809849FF1DD18B24D8A67386B
PID: 20.500.12556/rul/82008d7b-af2a-4b7e-9426-724bbeb16a75

Abstract
Porast raziskav v medicini poraja vedno več ugotovitev, ki imajo lahko za posledico nova ali izboljšana obstoječa zdravljenja. Obenem pa potrebe po novih raziskavah pripeljejo do težav pri zagotavljanju zadostnega števila bolnikov za prospektivne raziskave vseh obetajočih zdravljenj. Po drugi strani lahko z restrospektivno raziskavo na obstoječih podatkih bolnikov do določene mere simuliramo prospektivno raziskavo. Glavna težava pri tem pristopu je, da imajo obstoječi podatki običajno neuravnotežene porazdelitve karakteristik po množicah bolnikov, na katerih izvajamo retrospektivno raziskavo, kar oteži vrednotenje učinkov zdravljenja. Predstavljen je algoritem za uravnoteževanje množic bolnikov z danimi karakteristikami, ki z uparjanjem in z izločanjem izbranih bolnikov ustvari uravnotežene podmnožice bolnikov. Algoritem uporablja Pearsonov test hi kvadrat za merjenje kvalitete medsebojne uravnoteženosti množic in vsoto uteženih razlik vrednosti karakteristik za določanje parov elementov med dvema množicama. Uvedeni sta dve novi strategiji uparjanja elementov: s požrešno metodo preko matrike podobnosti parov, ter z algoritmom minimin na drevesu stanj do predpisane globine za izbiro naslednjih dveh elementov za uparjanje. Uvedena je mera kvalitete uparjenosti med dvema množicama. Rezultati kažejo, da požrešna metoda daje boljše rezultate od izvirnega algoritma, medtem ko se algoritem minimin izkaže za časovno zahtevnega zaradi kombinatorične zahtevnosti in pri globinah, ki so glede tega še praktične za izvajanje algoritma, daje kvečjemu primerljive rezultate izvirnemu algoritmu, vendar slabše od požrešne metode. Metode so bile eksperimentalno primerjane na realnih podatkih iz medicinskih raziskav zdravljenja raka.

Language:Slovenian
Keywords:retrospektivne raziskave, simulacija prospektivnih raziskav, uparjanje, uravnoteževanje množic, hevristično preiskovanje, hevristična ocena kvalitete uravnoteženosti, Pearsonov test hi kvadrat
Work type:Undergraduate thesis
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Publisher:[A. Smodiš]
Year:2016
Number of pages:57 str.
PID:20.500.12556/RUL-91175 This link opens in a new window
COBISS.SI-ID:1536769731 This link opens in a new window
Publication date in RUL:24.03.2017
Views:1209
Downloads:317
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Licences

License:CC BY-SA 2.5 SI, Creative Commons Attribution-ShareAlike 2.5 Slovenia
Link:https://creativecommons.org/licenses/by-sa/2.5/si/deed.en
Description:You are free to reproduce and redistribute the material in any medium or format. You are free to remix, transform, and build upon the material for any purpose, even commercially. You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Secondary language

Language:English
Title:Strategies for balanced selection from retrospective data for simulation of prospective studies
Abstract:
The increase of medical research generates more and more findings which can result in new or enhanced existing treatments. This increase of medical research leads to problems at ensuring a sufficent number of patients for prospective studies of all of the promising treatments. On the other hand a prospective study can be simulated to a certain degree with a retrospective study using existing data. The main problem with this approach is, that the existing data usually have unbalanced distributions of characteristics over the sets of patients, which makes it difficult to evaluate effects of treatment. An algorithm is described for balancing sets of patients with given characteristics, which creates balanced subsets of patients using pairing and elimination of selected patients. The algorithm uses Pearson's chi-squared test for measuring the balance quality between two sets, and the sum of weighed differences between the characteristics for defining element pairs between sets. Two new element pairing strategies are introduced: a greedy method using an element similarity matrix, and the minimin algorithm using a state tree with limited depth for choosing the next elements to pair. A measure for the quality of a match between two sets is introduced. Results show that the greedy method gives better results from the original algorithm, whereas the minimin algorithm turns out to be time demanding because of the combinatorial complexity. At depths at which the algorithm is still practical to use, it gives results at best comparable to the original algorithm, but worse than the greedy method. The methods were experimentally compared on real data from medical studies in cancer treatment.

Keywords:retrospective studies, simulated prospective studies, pairing, data set balancing, heuristic search, heuristic evaluation of balance quality, Pearson's chi-squared test

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back