izpis_h1_title_alt

Postavitev skalabilne arhitekture za napovedovanje razpoložljivosti postaj sistema BicikeLj
ID Koželj, Klemen (Author), ID Sadikov, Aleksander (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,24 MB)
MD5: 5BD8804827BCE1760C57AC7026787231
PID: 20.500.12556/rul/d3039d0a-c044-4181-9882-b0c5df3e948d

Abstract
Dandanes smo priča pravi digitalni revoluciji v vseh panogah industrije, ki se ukvarjajo z mobilnostjo ali s transportom. Kot zgled lahko izpostavimo ameriški start up Uber, ki je v nekaj letih po vsem svetu digitaliziral mobilnost. Njegov celotni poslovni model sloni na podatkovnem rudarjenju, saj z metodami poskuša odgovarjati na vprašanje: "Od kod in kam bodo ljudje potovali?" ter za to potrebovali njihove storitve. Bolje kot lahko predvidijo gibanje populacije skozi neko področje, bolj uspešno in optimizirano je lahko njihovo poslovanje na trgu. V tej diplomski nalogi bomo sprva zbrali podatke o povpraševanju ljudi po mobilnosti v določenih predelih mesta in nato postavili učinkovit ter horizontalno razširljiv sistem, ki bo omogočal njihovo shranjevanje in obdelavo. Najbolj primeren za tovrstni projekt je ljubljanski sistem za izposojo koles, poimenovan BicikeLj. Vprašanje, na katerega bomo iskali odgovor, se glasi, kako zasedene bodo postaje BicikeLj ob izbranem času v prihodnosti in kako natančno znamo to napovedati iz preteklih podatkov.

Language:Slovenian
Keywords:apache hadoop, apache spark, podatkovno rudarjenje
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2017
PID:20.500.12556/RUL-91122 This link opens in a new window
Publication date in RUL:21.03.2017
Views:1316
Downloads:399
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Scalable architecture for availability prediction of BicikeLj stations
Abstract:
Recently, we are witnessing a true digital revolution in every sector of the industry, which is involved in mobility and transportation. As an example, we can expose American start-up Uber, which has drastically digitalized mobility in the recent years. Their business strategy is data driven; with the data mining methodologies they are trying to answer a question "From and where people will travel?", and for that they use their services. The better they can predict the movement of people through the area, the more successful and optimised their actions on the market are. In this bachelor thesis, first we will collect the data of movement of people through the city of Ljubljana, then we will form horizontally scalable system, which will enable us persistent storage and processing of the collected data. The most suitable system for this kind of project is bike sharing system located in Ljubljana, which operates under the brand BicikeLj. The question, on which we will try to answer, is how empty or full BicikeLj stations will be in a certain time in the future, and how precisely we can predict that based on the previous data.

Keywords:apache hadoop, apache spark, data mining

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back