izpis_h1_title_alt

Napovedovanje parkinsonove bolezni z analizo govora s pametnim telefonom
ZUPANC, ANDREJ (Author), Bratko, Ivan (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (718,05 KB)

Abstract
Zgodnja diagnoza bolezni lahko precej vpliva na njen nadaljnji potek, pravo\-časno zdravljenje in kvaliteto življenja. Vendar vse bolezni niso ozdravljive, zdravniki lahko pomagajo le lajšati simptome. Takšna je parkinsonova bolezen, ki je nevrodegenerativna bolezen, katere glavni simptomi so tremor v mirovanju, počasno začenjanje gibov, mišična rigidnost in tudi težave z govorom. Zato smo se v tej diplomski nalogi odločili razviti sistem za zgodnje odkrivanje parkinsonove bolezni, ki bi znal prepoznati znake parkinsonove bolezni v govoru. V ta namen smo razvili mobilno aplikacijo, vmesnik API in klasifikator. Vmesnik API shrani zvočne posnetke, posnete z mobilno aplikacijo, jih analizira in klasificira s klasifikatorjem, ki je bil prav tako razvit v sklopu diplomske naloge. Po končani klasifikaciji vmesnik API vrne rezultat mobilni aplikaciji, ki uporabnika obvesti o rezultatu analize njegovega glasu. Aplikacija je bila razvita za operacijski sistem Android. Vmesnik API je razvit s pomočjo knjižnice Flask. Različice klasifikatorjev so bile razvite s knjižnico Scikit learn in Keras, med katerimi smo izbrali najboljšega in ga implementirali v vmesnik API. Predstavljen je tudi primer uporabe tega izdelka.

Language:Slovenian
Keywords:strojno učenje, parkinsonova bolezen, mobilna aplikacija, neuravnoteženi podatki
Work type:Bachelor thesis/paper (mb11)
Organization:FRI - Faculty of computer and information science
Year:2017
Views:642
Downloads:227
Metadata:XML RDF-CHPDL DC-XML DC-RDF
 
Average score:(0 votes)
Your score:Voting is allowed only to logged in users.
:
Share:AddThis
AddThis uses cookies that require your consent. Edit consent...

Secondary language

Language:English
Title:Predicting Parkinson's Disease with Voice Analysis on a Smartphone
Abstract:
Early diagnosis can have significant effect on disease progression, its treatment and patient's quality of life. However, some diseases are incurable, and doctors can only help relieve symptoms. One of such is Parkinson's disease, a neurodegenerative disease marked by tremor, slowness of movement, muscular rigidity and difficulty with speaking. The aim of this paper was to develop a system for early diagnosis of Parkinson's disease which could recognize signs of Parkinson's disease in a person's voice. For this purpose, a mobile application, an API interface and a classifier were developed. The API interface saves voice recordings made by the mobile application, then analyses and classifies them with the classifier. After the classification is done, the API interface sends the result back to the mobile application which informs its user about the outcome of their voice analysis. The application was developed for Android operating system. The API interface is based on the Flask library. Different classifiers using libraries Scikit-learn and Keras were developed. Then, the most appropriate classifier was chosen and implemented into the API interface. An example of how the application can be used is also described.

Keywords:machine learning, Parkinson's disease, mobile application, imbalanced data

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Comments

Leave comment

You have to log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back