izpis_h1_title_alt

Analiza rasti v pametnem hidroponičnem sistemu
ID Dolenc, Peter (Author), ID Lotrič, Uroš (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (8,62 MB)
MD5: 2A0A2C01EA1DEBE88117DE9220B6C727
PID: 20.500.12556/rul/de86a23b-e9df-40d6-968d-b3cc25d39740

Abstract
Vzgoja rastlin s hidroponiko ima v primerjavi s konvencionalnim pristopom številne prednosti: rastline hitreje zrastejo na manjši površini in z manjšo porabo vode. Hidroponični sistemi so v industriji že precej razširjeni, nastopajo v obliki kompleksnih specializiranih sistemov. Za domače uporabnike je hidroponični sistem ponavadi preveč poenostavljen in neoptimalen ali pa prezahteven za upravljanje. Kot rešitev na težavo domačega uporabnika, je bil izdelan hidroponični sistem, ki je po zmožnostih kompleksen, po zahtevnosti upravljanja pa preprost, saj za naloge upravljalca poskrbi logika v vgrajenem sistemu. Izdelan sistem je zmožen povsem avtomatske regulacije dejavnikov, rast rastlin pa spremlja z zajemom fotografij posamičnih rastlin iz ptičje perspektive. Sistem enkrat dnevno zajame fotografije, iz njih izlušči listno površino in poišče najbolj optimalne nastavitve za rast. Za iskanje optimalnih nastavitev je bila izdelana adaptivna programska oprema, ki uporablja dvostopenjski sistem strojnega učenja. V prvi stopnji se z uporabo nevronskih mrež in zajetih preteklih podatkov zgradi model rasti rastline v odvisnosti od nastavitev hidroponičnega sistema. V drugi stopnji se preišče prostor nastavitev hidroponičnega sistema z uporabo genetskega algoritma. Najboljše nastavitve glede na trenutno stanje rastlin se uveljavijo. Učinkovitost implementirane adaptivne regulacije je bila, z izvajanjem eksperimentov, primerjana z učinkovitostjo vzgoje rastlin z ekspertnimi nastavitvami. Ob primerjavi najboljših eksperimentov, se je pridelek, v prid adaptivne regulacije, povečal za 13 \%, odstotek rasti pa za faktor 2.

Language:Slovenian
Keywords:hidroponika, hidroponiˇcni sistem, rastlinjak, adaptivni sistem, nevronska mreˇza, genetski algoritem, strojno uˇcenje, aeroponika, solata, vgrajeni sistem
Work type:Master's thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2017
PID:20.500.12556/RUL-89093 This link opens in a new window
Publication date in RUL:15.02.2017
Views:2089
Downloads:533
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Smart hydroponic system growth analysis
Abstract:
Hydroponic approach to growing plants has many benefits over conventional approach, such as: plants grow faster on smaller area and require less water. Hydroponic system usage in industry is quite well established, however, these systems are usually very specialized and complex. Home users can therefore mostly choose between oversimplified suboptimal or overly demanding hydroponic systems. As a solution to this problem a hydroponic system was designed which has all the capabilities of the complex systems but is simple for managing since it comes with integrated logic that takes over most of the managing tasks. The designed system is capable of fully automated regulation of system parameters and is able to track plant growth by taking bird’s-eye view pictures of each plant separately. Once a day the system will take pictures of all plants and extract leaf area from them. After that it will proceed to find optimal growth settings for the hydroponic system. In order to do so, a special adaptive software was developed that uses two-level machine learning mechanism. On the first level, it uses neural network and gathered data to create model of plant growth based on hydroponic system settings. On the second level the hydroponic settings space is searched using genetic algorithm. Settings that promise the most growth for the plants currently in the system are applied. Plant growth under the developed adaptive regulation software was compared to growth achieved through expert settings in a series of experiments. Comparison of best experiments revealed that adaptive regulation resulted in the final leaf area increase of 13 \% and plant total growth percentage increase by a factor of 2.

Keywords:hydroponics, hydroponic system, garden, adaptive system, neural network, genetic algorithm, machine learning, aeroponics, lettuce, embedded system

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back