Details

Izdelava in predelava zlitine EN AW 6082 z dodatkom cirkonija : diplomsko delo
ID Kos, Dejan (Author), ID Smolej, Anton (Mentor) More about this mentor... This link opens in a new window, ID Strnad, Viljem (Comentor)

.pdfPDF - Presentation file, Download (4,02 MB)
MD5: 1804C372CFF80DA204FAD50E97B9F2D6
PID: 20.500.12556/rul/b00623fd-40dd-4fd0-9b11-02551f69cdab

Language:Slovenian
Keywords:aluminijeva zlitina, cirkonij, mehanske lastnosti, mikrostruktura
Work type:High school thesis
Typology:2.11 - Undergraduate Thesis
Organization:NTF - Faculty of Natural Sciences and Engineering
Place of publishing:Ljubljana
Publisher:[D. Kos]
Year:2016
Number of pages:VI, 70 f.
PID:20.500.12556/RUL-89068 This link opens in a new window
UDC:669.2/.8
COBISS.SI-ID:1605727 This link opens in a new window
Publication date in RUL:10.02.2017
Views:5924
Downloads:1007
Metadata:XML DC-XML DC-RDF
:
KOS, Dejan, 2016, Izdelava in predelava zlitine EN AW 6082 z dodatkom cirkonija : diplomsko delo [online]. Bachelor’s thesis. Ljubljana : D. Kos. [Accessed 5 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=89068
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Keywords:aluminium alloy, zirconium, mechanical properties, microstructure

Similar documents

Similar works from RUL:
  1. Object detection and classification in aquatic environment using convolutional neural networks
  2. Semantic segmentation of images for indoor place recognition
  3. Siamese neural network for motion detection in video sequences
  4. Segmentacija rok za obogateno resničnost
  5. A neural network for trench detection based on Lidar elevation model
Similar works from other Slovenian collections:
  1. Time series classification based on convolutional neural networks
  2. Prediction of geospatial raster data using convolutional neural networks
  3. Food recognition from digital images using convolutional neural networks
  4. Person age estimation based on digital images using convolutional neural networks
  5. Person activity recognition from image sequence using convolutional neural networks

Back