Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Zaznava prevožene rdeče luči na podlagi algoritmov računalniškega vida
ID
ŠUŠTERIČ, MIHA
(
Author
),
ID
Perš, Janez
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(16,49 MB)
MD5: DF89480C70B0A78EABAF7DE16C8898F6
PID:
20.500.12556/rul/0a0f372d-eca2-4f4a-8ae2-524dba19b369
Image galllery
Abstract
Raziskave s področja cestne varnosti so pokazale, da je mogoče število prekrškov vožnje skozi rdečo luč in posledično prometne nesreče, katerim botruje tovrsten prekršek, znatno zmanjšati, s postavitvijo sistemov za samostojno zaznavo prekrškarjev. Osrednja tema tega dela je prometen nadzorni sistem na osnovi računalniškega vida, ki zazna spremembo semaforja brez signala semaforskega krmilnika ter zazna prevoženo rdečo luč. Ob takšnem dogodku sistem samodejno posname in shrani prekršek. Poudarek je na kompaktnosti in preprosti postavitvi sistema, saj je to nadgradnja obstoječih rešitev, ki so se izkazale za nepraktične ravno zaradi kompleksnosti vgradnje. Sistemska rešitev je pripravljena z nadzorno kamero Axis P1357 in mikroračunalnikom Raspberry Pi 2, v programskem jeziku Python z uporabo knjižnice OpenCV. V okviru naloge sem opisali izzive, s katerimi sem se soočal pri programiranju in rešitve, ki sem jih pripravil, ter podal mnenje, kaj in kako bi se dalo izboljšati. Vodilo naloge je bilo pripraviti rešitev za nadzor prometa z opremo, ki je bila dostopna v laboratoriju.
Language:
Slovenian
Keywords:
cestna varnost
,
prometni nadzor
,
računalniški vid
,
semafor
Work type:
Master's thesis/paper
Organization:
FE - Faculty of Electrical Engineering
Year:
2016
PID:
20.500.12556/RUL-87763
Publication date in RUL:
13.12.2016
Views:
2321
Downloads:
435
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ŠUŠTERIČ, MIHA, 2016,
Zaznava prevožene rdeče luči na podlagi algoritmov računalniškega vida
[online]. Master’s thesis. [Accessed 21 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=87763
Copy citation
Share:
Secondary language
Language:
English
Title:
Detecting Red Light Runs Using Computer Vision Algorithms
Abstract:
Researchers have shown, that the rate of traffic lights violations and thus related accidents can be significantly reduced by introducing autonomous red-light cameras to crossroads. The main topic of this work, is autonomous traffic control system for intersections, based on computer vision, that can detect change in traffic lights, without any signals from traffic lights controller and can identify a red light runner. That triggers the system to record and save the footage of the event for later inspection. Emphases of the project is to create a compact, easy to install system, that upgrades on the now existing systems, that need modifications of road surfaces and traffic lights controllers. Solution is made with a common security camera AXIS P1357 and microcomputer Raspberry Pi 2, in Python whit the use of OpenCV library. As a part of this work I discuss challenges and solutions, to the problems I encountered and I give a few suggestions as to what could be done better. The main thread of this work was to create a solution for traffic control with the equipment found in the laboratory.
Keywords:
road safety
,
traffic control
,
computer vision
,
traffic lights
Similar documents
Similar works from RUL:
Detekcija in klasifikacija objektov v vodnem okolju s pomočjo konvolucijskih nevronskih mrež
Semantična segmentacija slik za razpoznavanje notranjih prostorov
Siamska nevronska mreža za detekcijo gibanja v video sekvencah
Hand Segmentation for Augmented Reality
Nevronska mreža za detekcijo strelskih jarkov na podlagi Lidar digitalnega modela višin
Similar works from other Slovenian collections:
Klasifikacija časovnih vrst s konvolucijskimi nevronskimi mrežami
Napovedovanje geoprostorskih rastrskih podatkov s konvolucijskimi nevronskimi mrežami
Prepoznavanje jedi iz digitalnih slik s pomočjo konvolucijskih nevronskih mrež
Ocenjevanje starosti osebe na osnovi digitalnih posnetkov z uporabo konvolucijskih nevronskih mrež
Prepoznavanje aktivnosti osebe iz zaporedja slik s pomočjo konvolucijskih nevronskih mrež
Back