Details

Klinični pomen določanja tumorskih označevalcev CEA in CA 19-9 pri raku trebušne slinavke : magistrski študij laboratorijske biomedicine
ID Blazinšek, Renata (Author), ID Osredkar, Joško (Mentor) More about this mentor... This link opens in a new window

URLURL - Presentation file, Visit http://www.ffa.uni-lj.si/docs/default-source/knjiznica-doc/magistrske/blazinsek_renata_mag_nal_2016.pdf?sfvrsn=2 This link opens in a new window

Language:Slovenian
Keywords:rak, medicina, karcinoembrionalni antigen, karbohidratni antigen 19-9, kancerogeneza, diaganostika raka
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FFA - Faculty of Pharmacy
Place of publishing:Ljubljana
Publisher:[R. Blazinšek]
Year:2016
Number of pages:IX, 64 f.
PID:20.500.12556/RUL-87373 This link opens in a new window
UDC:616.3+616-006(043.3)
COBISS.SI-ID:4158065 This link opens in a new window
Publication date in RUL:07.12.2016
Views:2172
Downloads:205
Metadata:XML DC-XML DC-RDF
:
BLAZINŠEK, Renata, 2016, Klinični pomen določanja tumorskih označevalcev CEA in CA 19-9 pri raku trebušne slinavke : magistrski študij laboratorijske biomedicine [online]. Master’s thesis. Ljubljana : R. Blazinšek. [Accessed 26 March 2025]. Retrieved from: http://www.ffa.uni-lj.si/docs/default-source/knjiznica-doc/magistrske/blazinsek_renata_mag_nal_2016.pdf?sfvrsn=2
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:The clinical value of tumour markers CEA and CA 19-9 in pancreatic cancer
Keywords:Trebušna slinavka

Similar documents

Similar works from RUL:
  1. Object detection and classification in aquatic environment using convolutional neural networks
  2. Computer-vision based polyp detection in underwater images
  3. Training deep neural networks for stereo vision
  4. Image Compression Using Convolutional Neural Networks
  5. Using deep convolutional neural networks on natural language problems
Similar works from other Slovenian collections:
  1. Time series classification based on convolutional neural networks
  2. Cross-Hole GPR for Soil Moisture Estimation Using Deep Learning
  3. UAV Thermal Imaging for Unexploded Ordnance Detection by Using Deep Learning
  4. The preparation of photos' dataset and its classification using deep neural networks
  5. Image-to-image translation through generative adversarial networks

Back