izpis_h1_title_alt

KONTEKSTUALNI MODEL RABE ENERGIJE V INDUSTRIJI
ID PUŠNIK, MATEVŽ (Author), ID Gubina, Andrej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (6,54 MB)
MD5: 09D193AD844F1B0991963A2D02271F5C
PID: 20.500.12556/rul/42028b85-a85a-422c-acdd-89b4378d5af2

Abstract
Energetsko intenzivne industrijske panoge so se morale v zadnjih letih pospešeno, predvsem zaradi ekonomske in finančne krize, na najrazličnejše načine spopasti z učinkovito porabo energije in odgovornim gospodarjenjem z naravnimi in materialnimi resursi. Številne investicije v zelene tehnologije in zamenjave starih energetsko neučinkovitih tehnologij z novimi, učinkovitejšimi, kažejo na pomembno korelacijo med energetsko učinkovitostjo in ceno končnega proizvoda. Prav tako je raba energije direktno povezana z izpustom emisij v ozračje, pri čemer pomeni preseganje mejnih vrednosti velik strošek podjetja. Optimizacija procesov in upravljanje z energetskimi in materialnimi viri je v takšnih panogah ključnega pomena. Dinamične razmere na zahtevnih mednarodnih trgih zahtevajo od industrijskih podjetij čim hitrejši odziv na različne tržne signale in ustrezno prilagajanje. Konvencionalne metode in orodja, ki so trenutno na voljo za energetski menedžment, ne vključujejo možnosti napovedovanja prihodnjih stanj. Dinamične, kratkoročne napovedi lahko omogočijo predhodna opozorila na procesnem nivoju, medtem ko omogočajo dolgoročne napovedi ustrezen odziv na razmere na trgu. Nove metode doseganja prihrankov v industriji in širša uporaba sodobnih matematičnih algoritmov ter umetne inteligence, predstavljajo korak naprej v smeri trajnostnega razvoja celotne družbe. Kompleksen preplet naprednih matematičnih postopkov in informacijsko-komunikacijskih tehnologij, lahko omogoči energetsko intenzivnim podjetjem višjo energetsko produktivnost ter zagotovi ekonomsko stimulacijo za izboljšanje proizvodnih procesov in konkurenčno prednost na trgu. V doktorski disertaciji smo preučili možnosti modeliranja in kontekstualizacije rabe energije v energetsko intenzivnih industrijskih panogah. Pri tem smo se osredotočili na rabo energije, kontekst v katerem raba nastopi, emisije ter posledične stroške in prihranke v energetsko intenzivnih industrijskih panogah. Kontekstualni parametri lahko v procesu nastopajo samostojno, ali pa v kombinaciji z ostalimi. Poudariti je potrebno, da lahko z upoštevanjem kontekstualnih parametrov in širšega konteksta rabe energije, dosežemo večje prihranke energije, kot bi jih dosegli ob uporabi klasičnih metod procesne optimizacije. Pokazali smo, da lahko pretekle meritve, obogatene s kontekstualnimi podatki, uporabimo za prepoznavanje energetskih profilov oziroma vzorcev rabe energije in izpustov v industriji. V ta namen smo predlagali dva kontekstualna modela, in sicer: model za optimizacijo proizvodnih procesov ter model za simulacijo in dolgoročno načrtovanje proizvodnje v energetsko intenzivnih industrijskih panogah. Oba kontekstualna modela smo razvili na podlagi uporabe nevronskih mrež in pristopa energetskih stroškovnih centrov. Simulacijski algoritem kontekstualnega modela predstavljajo nevronske mreže, ki matematično opisujejo posamezne procese rabe energije, upoštevajoč identificirane specifične kontekstualne vplivne parametre. Procesna stanja, ki smo jih uporabili za učne množice v procesu učenja nevronskih mrež, smo pridobili neposredno preko sistemov vodenja procesa (SCADA) in upravljanja z energijo (SUE). Razvili smo nov kontekstualni model za kratkoročno optimizacijo proizvodnih procesov ter kontekstualni model za dolgoročno načrtovanje proizvodnje v energetsko intenzivnih industrijskih panogah. Razvoj in uporabo modela smo prikazali na primeru modela procesa pečenja klinkerja v cementni proizvodnji. Za učenje nevronske mreže smo uporabili Levenberg – Marquardt-ov algoritem vzvratnega učenja. Predlagan kratkoročni kontekstualni model se je izkazal za uporabnega pri kratkoročnem napovedovanju rabe energije in parametrov kakovosti končnega proizvoda, pri čemer je potrebno poudariti, da neustrezna kakovost končnega proizvoda pomeni ponovitev proizvodnega postopka. Za modeliranje in napovedovanje litrske teže klinkerja smo uporabili nevronsko mrežo tipa NARX, pri čemer smo za učenje mreže zopet uporabili Levenberg – Marquardt-ov algoritem vzvratnega učenja. Dolgoročni kontekstualni model se je izkazal za ustreznega pri podpori dolgoročnemu načrtovanju proizvodnje cementa. Preko zaznave ustreznih območij proizvodnje, izbire goriv in stroškovnih ter energetskih analiz, smo z dolgoročnim kontekstualnim modelom analizirali področja delovanja in določili lokalne optimume. Kontekstualni model za dolgoročno načrtovanje proizvodnje in podporo odločanju, smo razvili na podlagi Net Fitting nevronskih mrež, ki so se izkazale za uporabne in dovolj natančne pri načrtovanju dolgoročnih napovedi rabe energije. Takšne napovedi so predvsem pomembne za optimalno načrtovanje proizvodnje, s čimer dosežemo nižje stroške proizvodnje, ki so direktno povezani s stroški emisijskih kuponov, konvencionalnih in alternativnih goriv ter vzdrževanjem. Nevronske mreže smo učili z Levenberg – Marquardt-ovim algoritmom vzvratnega učenja. Predlagana metodologija kontekstualnega modela rabe energije v industriji, ponuja funkcionalnosti, ki presegajo tradicionalne rešitve v industriji. Razviti kontekstualni model združuje principe sistemov upravljanja z energijo, procesnega vodenja, podpore odločanju in sodobne načine, ki omogočajo napovedovanje. Industrija potrebuje na področju upravljanja z energijo robustni sistem, ki mora ponujati ustrezne funkcionalnosti, nadgradnjo le teh pa nedvomno predstavlja uporaba kontekstualnih modelov rabe energije. Predlagani kontekstualni model lahko omogoči pomembne prihranke energije v industrijskih podjetjih, pri čemer pa je potrebno odgovorne osebe ustrezno motivirati, usposobiti in izobraziti. Možnost za širšo integracijo predlaganega koncepta vidimo prav v prehodu podjetij v novo industrijsko paradigmo, kjer se ponuja priložnost za implementacijo naprednih sistemov upravljanja z energijo.

Language:Slovenian
Keywords:kontekstualni modeli, sistemi upravljanja z energijo, nevronske mreže, energetski stroškovni centri, napoved rabe energije, načrtovanje proizvodnje, energetska učinkovitost v industriji
Work type:Doctoral dissertation
Organization:FE - Faculty of Electrical Engineering
Year:2016
PID:20.500.12556/RUL-87168 This link opens in a new window
COBISS.SI-ID:11625044 This link opens in a new window
Publication date in RUL:28.11.2016
Views:2704
Downloads:716
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:CONTEXTUAL MODEL OF ENERGY USE IN INDUSTRY
Abstract:
Energy intensive industries had to find new ways of dealing with energy efficiency and resource management, due to the economic and financial crisis in recent years. Investments in energy efficient solutions and the replacement of old, inefficient technologies with new, more efficient, suggests a significant correlation between energy efficiency and the price of the final product. Furthermore, energy consumption is directly linked to the release of various emissions into the atmosphere, where exceeding limits represent additional costs. Hence, process optimization and management of energy and material resources is of crucial importance in such industries. Dynamic conditions on demanding international markets require a proper response of industrial companies to a variety of market signals and adjustments. Conventional methods and tools for energy management, which are currently available, do not include the possibility of predicting the future process related states. Dynamic, short-term forecasts may enable early warnings and provide future insights into the short-term process states, while long-term forecasts enable decision support and scenario based response analysis, taking into account different market conditions. New methods of achieving savings in industry and the use of modern mathematical algorithms and artificial intelligence, represent an important step in the process of overall sustainable development of society. By combining advanced mathematical procedures with information and communication technologies (ICT), higher energy productivity of energy-intensive companies can be achieved. In this dissertation modelling and contextualization of energy consumption in energy-intensive industries is presented. The main focus has been on energy consumption modelling and the context in which the representative consumption occurs. Furthermore, related resource, environmental and economy flows have also been assessed. At this point it has to be emphasised, that by taking into account a broader context of energy use, greater energy savings can be achieved in comparison to conventional process optimisation methods. The simulation algorithm of the proposed contextual model is based on neural networks. Production processes are described with energy cost centres (ECC), taking into account the identified specific contextual influential parameters. The research confirms that measured historical data, enriched with context information can be used to identify energy profiles and energy consumption patterns in industry. For this purpose, two contextual models have been proposed, namely: a short-term context model for process optimisation and a long-term model for production planning and market response analysis. Production states used in the process of neural networks training have been collected through supervisory control and data acquisition system (SCADA) and implemented energy management system (EMS). Development and application of models are shown in a case study of modelling the process of clinker burning in the cement production. To train the neural networks a Levenberg – Marquardt's back propagation algorithm has been used. The proposed short-term contextual model has proved to be useful in the short-term forecasting of energy consumption and quality parameters of the final product. At this point it has to be emphasised that insufficient quality of the final product, results in production process prolongation. Short-term contextual model for quality parameters forecasts is based on NARX neural networks, trained with Levenberg – Marquardt's back propagation algorithm. Developed long-term contextual model has been recognised as adequate to support long-term production planning in the cement production. By analysing different production outputs, fuel alternatives and related energy, emission and economical flows, context depended local optimums have been obtained. Contextual model for long-term production planning and decision support has been developed using Net Fitting neural networks, which have proved to be useful and sufficiently precise for long-term energy consumption prediction. Such forecasts are particularly important for scenario based analysis and cost optimisation, where the use of alternative fuels is highlighted. For long-term energy consumption forecasts a Levenberg – Marquardt's back propagation algorithm has been used. The proposed methodology of contextual model of energy use in industry, offers functionalities beyond traditional industry solutions. Developed models combine basic principles of energy management systems, process control systems, decision support systems and modern mathematical approaches that have the power of forecasting. Novel functionalities of the proposed contextual model and its robust structure represent an important upgrade to the traditional energy management systems. The use of contextual models can facilitate significant energy savings, assuming that target end users are properly trained and educated to make decisions related to energy efficiency. The possibility of wider integration of the proposed concept is clearly noticeable, especially in the scope of the transition of companies towards new industrial paradigm, Industry 4.0.

Keywords:contextual models, energy management systems, neural networks, energy cost centres, energy forecasts, production planning, energy efficiency in industry

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back