Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Vivianijev izrek in njegove posplošitve
ID
Ceferin, Terezija
(
Author
),
ID
Repovš, Dušan
(
Mentor
)
More about this mentor...
,
ID
Cencelj, Matija
(
Comentor
)
URL - Presentation file, Visit
http://pefprints.pef.uni-lj.si/4174/
Image galllery
Abstract
V magistrskem delu predstavljamo Vivianijev izrek, ki velja v enakostraničnem trikotniku in pravi, da je vsota razdalj med poljubno točko in stranicami enaka višini trikotnika oziroma vsota razdalj je konstantna. V delu ugotavljamo, ali je vsota razdalj od točke do stranic neenakostraničnega trikotnika tudi enaka kateri izmed višin trikotnika oziroma raziskujemo, ali obstaja kakšno drugo razmerje med vsoto razdalj in višinami. Nadalje preučujemo posplošitve izreka na mnogokotnike in poliedre. Koncept posplošitve na izbranih primerih prikažemo z uporabo različnih metod. V ta namen ločeno preučujemo konveksne in konkavne mnogokotnike (oziroma poliedre). V zaključnem delu navedemo konkretne primere obravnave izreka pri matematiki v šoli in primer njegove uporabe pri risanju diagramov, ki imajo obliko enakostraničnega trikotnika.
Language:
Slovenian
Keywords:
Vivianijev izrek
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Year:
2016
PID:
20.500.12556/RUL-87143
COBISS.SI-ID:
11340873
Publication date in RUL:
04.09.2017
Views:
8631
Downloads:
283
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Viviani's theorem and its generalizations
Abstract:
The present master’s thesis deals with Viviani’s theorem valid in an equilateral triangle and stating that the sum of the distances between any interior point and the sides equals the triangle’s altitude i.e. that the sum of the distances is constant. In the paper it is investigated whether the sum of the distances from an interior point to the sides of a nonequilateral triangle also equals any of the triangle’s altitudes or whether there exists any other relation between the sum of the distances and the altitudes. A further investigation refers to a generalisation of the theorem to other polygons and polyhedra. The generalisation concept on chosen examples is shown by the use of various methods. To this end, convex and concave polygons (or polyhedra) are investigated separately. The conclusion gives concrete examples of dealing with the theorem in class and an example of its use in the drawing of diagrams having the form of an equilateral triangle.
Keywords:
Viviani’s theorem
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back