izpis_h1_title_alt

Priporočilni sistem za prehranske dodatke
ID KOŠTRUN, SIMON (Author), ID Kononenko, Igor (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,26 MB)
MD5: 871A8CA6DE30953DBB076B7938BE6E68
PID: 20.500.12556/rul/2a13560e-b7a7-4f1c-823a-d6bc35d11bcc

Abstract
Prehranska dopolnila so vsakdanjem življenju vedno pogostejša. Poraja se vprašanje, kako uporabniku na dokaj enostaven način pomagati pri izbiri le teh. Tema diplomske naloge je sestaviti spletno aplikacijo, ki uporabniku vrne najprimernejša prehranska dopolnila zanj v danem trenutku, kako se smejo le ta uživati, česa se je treba izogibati, kje se lahko kupijo itd. Za implementacijo smo uporabili preverjene in razširjene spletene tehnologije. Za uporabnike in administratorje sistema smo uporabili HTML5, CSS ter JavaScript, medtem ko v ozadju delo opravljata PHP ter MySQL. Za vsakega uporabnika aplikacija shrani podatke in s tem veča bazo. Iz baze potem po formuli pogojne verjetnosti uporabniku izračunamo in vrnemo verjetnost, da ima določeno bolezensko stanje, ki jo izračunamo iz njegovih vnesenih podatkov ter iz vseh vnesenih podatkov prejšnjihrazličnih uporabnikov.

Language:Slovenian
Keywords:superživila, priporočilni sistem, prehranski dodatki, pogojna verjetnost
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2016
PID:20.500.12556/RUL-87112 This link opens in a new window
Publication date in RUL:23.11.2016
Views:2519
Downloads:526
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Recommender system for nuitrition additives
Abstract:
Food supplements are becoming more and more common every day. The question arises, how to help the user in the selection of them. The goal is to create a web application, which returns to user the most appropriate food supplements, how he or she should take them, what to avoid, where to buy, etc. For implementation, we used validated and extended web technologies. For users and system administrators we use HTML5, CSS and JavaScript, while PHP and MySQL perform the background work. For each user, the application stores data and increases the database. We then use that database and user input to calculate probability of a certain medical condition using the formula of conditional probability.

Keywords:dietary supplements, recommendation system, nutritional supplements, conditional probability

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back