izpis_h1_title_alt

Napovedovanje dnevne proizvodnje električne energije sončnih elektrarn
ID Tomažič, Tomaž (Author), ID Kukar, Matjaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (7,85 MB)
MD5: B9D3E4B74344AB7765A3F00F87739ABC
PID: 20.500.12556/rul/5bb61803-a613-44f4-a6f0-15019bb4454c

Abstract
Slovenija je v zadnjih letih doživela precejšen razmah električne proizvodnje iz obnovljivih virov energije, med katerimi prevladuje sončna energija, saj cene fotonapetostnih modulov sčasoma strmo padajo in se vedno več ljudi odloča za takšne investicije. Napovedovanje proizvodnje električne energije iz fotonapetostnih modulov je pomembno tako za elektro distributerje, kot za trgovalce na borzi. V magistrskem delu pokažemo različne pristope obdelave surovih podatkov, pridobljenih iz merilnih mest in njihove vizualizacije, ki so zelo pomembne za lažje razumevanje podatkov. Atribute na podlagi katerih napovedujemo, najpogosteje in najenostavneje pridobimo v obliki modelskih napovedi vremenskih parametrov. Tisti, ki so ocenjeni kot najkoristnejši, so uporabljani za napovedovanje proizvodnje električne energije z različnimi modeli strojnega učenja. Raziskano je tudi vključevanje vpliva več različnih modelskih točk na določeno lokacijo elektrarne. Napovedovanje je prilagojeno primorski regiji Slovenije. Naši rezultati so v primerjavi z različnimi sorodnimi deli primerljivi ali celo boljši.

Language:Slovenian
Keywords:podatkovno rudarjenje, sončne elektrarne, dnevno napovedovanje, podatkovni tokovi
Work type:Master's thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2016
PID:20.500.12556/RUL-86824 This link opens in a new window
Publication date in RUL:08.11.2016
Views:2849
Downloads:510
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Prediction of daily photovoltaic systems production
Abstract:
Slovenia has vastly expanded electricity production from renewable energy sources recently. In the renewables world solar energy prevails, because in last few years prices of photovoltaic modules have fallen steeply, which gives people extra motivation to invest in photovoltaic systems. Predicting electricity production from photovoltaic modules is very important for electricity distributors and traders in electric energy markets. We describe the Slovenian electric energy market with focus on daily products in which our predictive model can be applied. In the thesis we show different approaches of processing raw data given from power plants and its visualisations, which are very important for easier understanding of the data. Attributes which are used for predictions are usually obtained in the form of weather forecast model parameters. Only the most valuable attributes are used in different machine learning models for predicting electricity production. Influence of spatial averaging multiple weather predictions for every power plant separately are studied, but our predictions are adjusted for Primorska region of Slovenia. We discuss and compare our results with other recent researches, where we reached a comparable or even better results.

Keywords:data mining, solar power stations, daily forecast, data streams

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back