izpis_h1_title_alt

Izbira značilk pri večslojnem gručenju
ID Magajna, Tadej (Author), ID Robnik Šikonja, Marko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,41 MB)
MD5: 56DB7C90BF8B2E1A575CE0CC85116DBF
PID: 20.500.12556/rul/5fdbbcad-21d1-4e66-89da-036235fed3b8

Abstract
V nalogi predstavimo področje izbire značilk pri večslojnem gručenju. Opišemo učenje z večimi pogledi in večopisno gručenje. Predlagamo novo metodologijo gručenja z večimi pogledi z opisom gruč, katerega rezultat so gruče, opisane na več načinov. Tovrstni opisi predstavljajo človeku razumljive razlage gruč in nudijo lažje razumevanje povezav med pogledi. Na umetni množici pokažemo, da predlagana tehnika izbire značilk mvReliefF uspešno deluje na podatkovnih zbirkah za učenje z več pogledi. Na podatkovni zbirki iz UCI repozitorija primerjamo dobljene rezultate s sorodnim člankom, kjer naši rezultati kažejo na izboljšanje uspešnosti gručenja. Metodologijo izvedemo na podatkih ADNI pacientov z Alzheimerjevo boleznijo. Dobljene gruče s tehnikami razlage prediktorjev opišemo posebej s kliničnimi in posebej z biološkimi značilkami. Te predstavljajo človeku razumljive razlage gruč in povezav med kliničnimi in biološkimi značilkami. Nevrološka analiza potrjuje smiselnost dobljenih gruč in povezav med sicer znanimi značilkami obeh pogledov.

Language:Slovenian
Keywords:učenje z večimi pogledi, večopisno rudarjenje, izbira značilk, algoritem ReliefF, Alzheimerjeva bolezen
Work type:Master's thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2016
PID:20.500.12556/RUL-86130 This link opens in a new window
Publication date in RUL:06.10.2016
Views:2136
Downloads:581
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Feature Selection for Multilayer Clustering
Abstract:
We present an overview of feature selection for multi-layer clustering. We explain the concepts of multi-view learning and redescription mining. We propose a new clustering method using predictor explanations which provide multiple explanations for each resulting cluster. These explanations serve as a interpretable definition of groups and can help to understand connections between features from different views. Test on our synthetic data set shows that the proposed multi-view feature selection method mvReliefF handles multi-view data well. On a data set from UCI repository we compared our method with published results. On a joined ADNI Alzheimer's disease data set, we explain the obtained clusters separately with clinical and separately with biological features using predictor explanations. The explanations serve as an interpretable cluster definitions and help to understand the connections between clinical and biological features. Neurological analysis suggests that the obtained clusters and connections between view features are meaningful.

Keywords:multi-view learning, redescription mining, feature selection, ReliefF algorithm, Alzheimer's disease

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back