izpis_h1_title_alt

Izbor estetsko optimalne fotografije iz sekvence podobnih ali skorajda enakih fotografij
ID HOŽIČ, TOMAŽ (Author), ID Solina, Franc (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (15,44 MB)
MD5: B3AE764630488E2364B08C35C85B92BB
PID: 20.500.12556/rul/d890b380-4bac-4e22-a120-a07991c710a2

Abstract
Digitalna fotografija je povzročila eksponentno povečanje obsega posnetih fotografij. Pregledovanje in na podlagi estetskih kriterijev utemeljen izbor pravih, najboljših oz. najlepših posnetkov zahteva precej časa. Z metodami strojnega učenja so že dosegli odlične in ponovljive rezultate prepoznavanja obrazov in objektov ter kategorije fotografij (portret, pokrajina, makro posnetek, šport idr.). Zaradi vse bolj zmogljive strojne opreme so za iskanje učinkovitih in uspešnih rešitev ponovno postale zelo zanimive nevronske mreže. Magistrsko delo analizira obstoječe rešitve oz. orodja, ki omogočajo (pol)avtomatski izbor najbolj estetskih fotografij iz sekvence fotografij. V nadaljevanju primerja klasični pristop za estetsko ugotavljanje in ocenjevanje s pomočjo metod in orodij strojnega učenja ter trend iskanja estetskih ocen oz. klasifikacij s pomočjo metod in orodij globokih konvolucijskih nevronskih mrež (angl. Deep Convolutional Neural Networks). Na podlagi lastnih profesionalnih fotografskih izkušenj, lastnega slikovnega materiala in preizkusa komercialnega prototipa je podan predlog rešitve problema.

Language:Slovenian
Keywords:fotografija, estetika, estetika fotografije, strojno učenje, konvolucijske nevronske mreže, metapodatki
Work type:Master's thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2016
PID:20.500.12556/RUL-85899 This link opens in a new window
Publication date in RUL:28.09.2016
Views:1909
Downloads:435
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Choosing an aesthetically optimal photographic image from a sequence of similar or nearly identical images
Abstract:
Digital Photography has caused an exponential increase of captured images. The process of reviewing and selecting the most beautiful images, in regard to some well-known aesthetic criteria, is a time consuming task. Excellent and repeatable face and object-recognition and image classification tasks of various kinds of images (portrait, landscape, macro, sports) are the result of applied machine learning algorithms. Because of the increase in hardware computing-power deep neural networks are becoming more and more popular. This master thesis analyses solutions and tools which can (semi)automatically find the most aesthetically pleasing images from a sequence of images. In this thesis the methods and tools of classical machine learning and those of deep convolutional neural networks are compared. On the basis of my professional photographic experience and images in various fields of photography (documentary, wedding, sport) a comercial prototype application is tested and some solutions to the problem are suggested.

Keywords:photography, aesthetics, aesthetics of photography, machine learning, convolutional neural networks, metadata

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back