izpis_h1_title_alt

Napoved cene za zagotavljanje moči za terciarno regulacijo frekvence v elektroenergetskem sistemu
ID MARKOČIČ, ROK (Author), ID Pantoš, Miloš (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (4,00 MB)
MD5: 3C90E95BFE3AA3D820F10DDAC2B7D166
PID: 20.500.12556/rul/56274732-43a1-49be-bff5-4b2db8308fdf

Abstract
V magistrski nalogi so predstavljene sistemske regulacije frekvence v elektroenergetskem sistemu (EES) ter možnosti sodelovanja aktivnih odjemalcev, v nadaljevanju DR (angl. Demand Response), na izravnalnem trgu. Podrobneje so opisana pravila in primerjava slovenskega in avstrijskega trga sistemskih regulacij frekvence, potrebnih rezerv energije, aktiviranih količin energije ter stroškov sistemskega operaterja prenosnega omrežja (SOPO) za namen izravnave EES. Za namen optimizacije dobičkov ponudnikov storitev sistemskih rezerv moči je bil razvit model za napoved povprečnih sprejetih cen produktov na dražbi za terciarno regulacijo frekvence v Avstriji. Ponudnik namreč dobi storitev plačano po ponujeni ceni (angl. »pay as bid«). Jedro modela za napoved povprečne sprejete cene produkta na dražbi za terciarno regulacijo frekvence je umetna nevronska mreža, katera na osnovi vplivnih dejavnikov na ceno produkta poda napoved cene tega produkta. Na vsaki dražbi se trguje z več produkti, ki se med seboj razlikujejo v časovnem obdobju zagotavljanja storitve rezerve moči. Umetna nevronska mreža je bila v prvi fazi uporabljena za pomoč pri izboru relevantnih vplivnih dejavnikov na ceno produktov in sicer tako, da je programska zanka testirala skupine vhodnih – vplivnih podatkov (različne učne in testne množice) in kakovost napovedi cene izbranega produkta, narejene na osnovi le-teh. V drugi fazi sta bila razvita dva modela za napoved cene produktov na dražbi. Prvi model s pomočjo prve skupine vhodnih – vplivnih podatkov napove ceno poljubnega produkta na dražbi, ni pa sposoben predvideti časovno naključnih, a rednih skokov cene. Drugi model z drugo skupino vhodnih – vplivnih dejavnikov sicer vrne bistveno slabšo napoved cene želenega produkta, je pa sposoben napovedati skok cene obravnavanega produkta. Rezultat obeh modelov je združen v skupnem modelu, kateri poda bistveno boljšo napoved cene produktov od Naivnega modela, ki ga uporabimo za primerjavo kakovosti napovedi cene. Skozi analizo smo ugotovili, da je možnost penetracije DR na trg sistemskih storitev v glavnem pogojen s pravili posameznega SOPO. Kljub težavam pri sodelovanju na trgu pa DR znižuje stroške operaterja za izravnavo sistema. Na ceno določenega produkta na dražbi vpliva, poleg fundamentalnih dejavnikov kot so razpoložljivost plinskih blokov, proizvodnja sončne energije, cena na nemškem dnevnem trgu (EEX spot), še precej drugih, na primer cena istega produkta na prejšnji dražbi, število ponudnikov na dražbi, ponujene količine, ponujene cene posameznega ponudnika itd. Model za napovedovanje skokov se je izkazal kot uspešen v 4 od 5 primerov. Z EEX spot ceno in dosegljivostjo plinskih proizvodnih enot kot vhodnimi podatki, v vseh testnih primerih uspešno napovemo čas skoka cene produkta. V enem primeru je prvemu skoku sledil manjši padec in nato ponoven skok, ki ga pa model ni zaznal. Kot skok smatramo porast cene za večkratnik osnovne cene določenega produkta. S skupnim modelom tako v vseh primerih dobimo boljše rezultate od Naivnega modela.

Language:Slovenian
Keywords:sistemske storitve, aktivni odjem, rezerve z odjemom, izravnalni trgi, model za napoved cene, rezultati dražbe, umetna nevronska mreža
Work type:Master's thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2016
PID:20.500.12556/RUL-85680 This link opens in a new window
Publication date in RUL:21.09.2016
Views:3470
Downloads:941
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Price forecasting for tertiary frequency control reserve in a power system
Abstract:
Master thesis presents utilization of demand side response on the ancillary service market in Slovenia and Austria. The relevant regulation on Slovenian and Austrian market is described in detail and a comparative analysis about required reserves, activated volumes and costs of the transmission system operator for the purpose of system balancing is made. In order to optimize the economic result of a given service provider (aggregator), a model for forecasting the auction price for tertiary control in Austria was developed. The ancillary market in Austria and Slovenia are presented and compared. Analysis shows that the possibility of penetration of the DR on the ancillary services market is heavily affected by the regulation and market design. Despite all difficulties faced by DR in real life operation, DR can reduce the balancing cost born by the system operator. The developed forecasting model is based on an artificial neural network. The output of the model is the average accepted price of each specific product on the auction for tertiary control in Austrian market, while inputs into the model were carefully selected, representing relevant information affecting the price. There are many factors that have an impact on the product price at the auction as availability of gas generators, solar energy production, day-ahead market price etc. In addition to obvious fundamental factors, there are still many others affecting auction results, such as the price of the previous auction, the number of participants at the auction, offered quantities, offered prices, and many others. First, an artificial neural network was used for selecting relevant input variables referring to the price of the specific products, which was possible by making a loop that tested predefined sets of input data and the model results attained by them. In the second phase, two models for price prediction have been developed, since price evolution exhibits specific pattern of continuously and slowly declining price with sudden increases (jumps) during winter and summer months, which is associated with unit availability and operation of renewables. The first model using one set of input data predicts the product price at the auction in usual price declining periods, but it is not able to predict price jumps. The second model using different set of input data on one hand produces worse overall results, while on other hand substantially improves prediction of price jumps. This is achieved by utilizing day-ahead price on the German market (EEX spot) and the available capacity of gas production units on German market as input variables. Model for predicting price jumps turned out to be able to predict a jump in 4 out of 5 tests. Finally, both models are combined into a joint model, which additionally improves the overall result. Results of the developed model were compared with those from naïve model, showing a significant improvement over naïve forecasts.

Keywords:ancillary services, demand response, balancing markets, forecasting model, auction results, artificial neural network

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back