Details

Prepoznavanje prometnih znakov z uporabo globokih konvolucijskih nevronskih mrež
ID Karamatić, Boris (Author), ID Skočaj, Danijel (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (10,85 MB)
MD5: 790E88DAB69AD9B99D1CC459E4AAC1C9
PID: 20.500.12556/rul/f2411eff-349b-4ec2-99d4-52fad21cbc84

Abstract
Problema detekcije in prepoznavanja prometnih znakov postajata pomemben problem pri razvoju samovozečih vozil ter naprednih sistemov za asistenco vozniku. V diplomski nalogi bomo razvili sistem za detekcijo in prepoznavanje prometnih znakov. Za problem detekcije bomo uporabili značilnice iz agregiranih kanalov, za problem prepoznavanja pa globoko konvolucijsko nevronsko mrežo. Opisali bomo kako konvolucijske nevronske mreže delujejo, kako so zgrajene ter razložili pomen posameznih nivojev. Razložili bomo pristop, katerega smo uporabili pri razvoju konvolucijske nevronske mreže. Končne rezultate detekcije in klasifikacije bomo evalvirali na uveljavljenih bazah prometnih znakov.

Language:Slovenian
Keywords:konvolucijska nevronska mreža, prometni znaki, detekcija, prepoznavanje, klasifikacija
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2016
PID:20.500.12556/RUL-85567 This link opens in a new window
Publication date in RUL:16.09.2016
Views:2685
Downloads:505
Metadata:XML DC-XML DC-RDF
:
KARAMATIĆ, Boris, 2016, Prepoznavanje prometnih znakov z uporabo globokih konvolucijskih nevronskih mrež [online]. Bachelor’s thesis. [Accessed 31 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=85567
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Traffic sign recognition with deep convolutional neural networks
Abstract:
The problem of detection and recognition of traffic signs is becoming an important problem when it comes to the development of self driving cars and advanced driver assistance systems. In this thesis we will develop a system for detection and recognition of traffic signs. For the problem of detection we will use aggregate channel features and for the problem of recognition we will use a deep convolutional neural network. We will describe how convolutional neural networks work, how they are constructed and we will explain the use of every layer. We will describe the steps we took to develop our convolutional neural network. We will evaluate the results of detection and classification on established traffic sign datasets.

Keywords:convolutional neural network, traffic signs, detection, recognition, classification

Similar documents

Similar works from RUL:
  1. Vpliv uporabe izkašljevalnika in neinvazivne mehanske ventilacije na preživetje bolnikov z amiotrofično lateralno sklerozo
  2. Circulating RNAs as potential biomarkers inamyotrophic lateral sclerosis
  3. Primerjava dinamometričnega in elektrofiziološkega indeksa razcepljene roke pri bolnikih z amiotrofično lateralno sklerozo
  4. Pregled ortoz pri bolnikih z amiotrofično lateralno sklerozo
  5. Ultrazvočna ocena trebušne prepone pri bolnikih z amiotrofično lateralno sklerozo
Similar works from other Slovenian collections:
  1. Poučenost medicinskih sester o amiotrofični lateralni sklerozi
  2. Učinkovitost fizioterapevtske obravnave pacientov z amiotrofično lateralno sklerozo
  3. Obvladovanje akutne neinvazivne mehanske ventilacije za zagotavljanje varnosti pacienta v enoti intenzivne terapije
  4. Primerjava doživljanja bremena pri skrbnikih bolnikov z nekaterimi nevrodegenerativnimi boleznimi
  5. Zdravstvena nega pacienta z amiotrofično lateralno sklerozo - študija primera

Back