Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Semantična segmentacija slik za razpoznavanje notranjih prostorov
ID
Lampe, Ajda
(
Author
),
ID
Kristan, Matej
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(4,70 MB)
MD5: F5CB632A9422ECD781C2A4620D33E33C
PID:
20.500.12556/rul/d0bba800-8cd7-45b9-bd28-6a1f55a0c7e9
Image galllery
Abstract
Razpoznavanje prostorov je zanimiv problem na področju računalniškega vida, ki je praktično uporaben na mnogo področjih v vsakdanjem življenju. Z razvojem mobilne robotike bo potreba po učinkovitem in točnem razpoznavanju prostorov rasla. V zadnjem času metode za klasifikacijo prostorov dosegajo vedno boljše rezultate z uporabo konvolucijskih nevronskih mrež, naučenih na veliki količini podatkov, vendar večina metod temelji na razpoznavanju celotne slike. Slabost teh sistemov se pokaže, kadar se na sliki pojavi več kot en prostor. V diplomskem delu smo razvili metodo, ki slabost obstoječih metod rešuje s semantično segmentacijo, pri tem pa smo se osredotočili na osem najpogostejših kategorij notranjih prostorov. Z uporabo dopolnjene in predelane zbirke podatkov smo izdelali in naučili tri konvolucijske nevronske mreže, ki se med seboj razlikujejo v številu polno povezanih nivojev. Njihovo točnost segmentacije in pravilnost detekcije smo numerično ovrednotili in vrednosti primerjali z rezultati obstoječe klasifikacijske mreže, ki dosega odlične rezultate pri klasifikaciji na nivoju slike. Rezultate mrež smo analizirali tudi kvalitativno. Naučene mreže presegajo rezultate referenčne, trenutno najboljše, metode za slabih 40\% pri lokalizaciji prostora in za 20\% pri detekciji objektov v sliki.
Language:
Slovenian
Keywords:
računalniški vid
,
razpoznavanje prostorov
,
semantična segmentacija
,
konvolucijske nevronske mreže
Work type:
Bachelor thesis/paper
Organization:
FRI - Faculty of Computer and Information Science
Year:
2016
PID:
20.500.12556/RUL-85565
Publication date in RUL:
16.09.2016
Views:
2999
Downloads:
786
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
LAMPE, Ajda, 2016,
Semantična segmentacija slik za razpoznavanje notranjih prostorov
[online]. Bachelor’s thesis. [Accessed 22 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=85565
Copy citation
Share:
Secondary language
Language:
English
Title:
Semantic segmentation of images for indoor place recognition
Abstract:
Space recognition is an interesting computer vision problem with many practical applications. Improvements in field of mobile robotics will most likely increase the need for efficient and accurate scene recognition systems. Lately, room classification methods have reached high classification accuracy with the use of popular convolutional neural networks, trained on large datasets, but most of the methods are based on holistic classification. Their disadvantage shows when presented with an image of multiple places. In this thesis we present a method that addresses the disadvantage of existing methods by use of semantic segmentation. In the work we focus on recognizing 8 most common indoor place categories. We improved and changed an existing dataset according to the problem and used it to build and train three convolutional neural networks with different numbers of fully-connected layers. We evaluated their segmentation and detection accuracy with use of mean intersection-over-union measure and F-measure, respectively, then compared obtained results with those of an existing holistic classification network, which achieves state-of-the-art results on the task of image-level classification. We also give a qualitative analysis of trained networks' results. Results show that our method outperforms the current state-of-the-art method by almost 40\% on the task of place localization and by 20\% on the task of place recognition.
Keywords:
computer vision
,
place recognition
,
semantic segmentation
,
convolutional neural networks
Similar documents
Similar works from RUL:
Searching for similar works...
Similar works from other Slovenian collections:
Back