Details

Analiza infrardečih spektrov z globokimi nevronskimi mrežami
ID Avbelj, Tina (Author), ID Demšar, Janez (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (4,24 MB)
MD5: 266244D7129C35678449C6989FF1E95C
PID: 20.500.12556/rul/8d7c8fb9-00d9-4357-9b9b-c08f1c4447b7

Abstract
Z opazovanjem absorpcijskega spektra, ki ga dobivamo z obsevanjem določenega vzorca, na primer tkiva, z infrardečo svetlobo, lahko dobimo informacijo o kemijski sestavi vzorca. Pri analizi spektrov pogosto uporabljamo klasifikacijske metode, s katerimi lahko določamo sestavo celotnega vzorca ali njegovih delov. Eden od primernih algoritmov za ta namen so umetne nevronske mreže. V diplomskem delu smo ugotavljali, kako uspešne so umetne nevronske mreže za klasifikacijo infrardečih spektrov. Preizkusili smo jih na več naborih podatkov ter jih primerjali z metodo podpornih vektorjev in multinomsko logistično regresijo. Preverjali smo tudi uspešnost konvolucijskih nevronskih mrež. Umetne nevronske mreže so dosegle primerno točnost, vendar niso veliko boljše od metode podpornih vektorjev, ki je, po drugi strani, bistveno hitrejša.

Language:Slovenian
Keywords:umetne nevronske mreže, globoko učenje, infrardeči spektri
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2016
PID:20.500.12556/RUL-85514 This link opens in a new window
Publication date in RUL:15.09.2016
Views:2635
Downloads:451
Metadata:XML DC-XML DC-RDF
:
AVBELJ, Tina, 2016, Analiza infrardečih spektrov z globokimi nevronskimi mrežami [online]. Bachelor’s thesis. [Accessed 1 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=85514
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Analysis of infrared spectra using deep neural networks
Abstract:
Absorption spectra obtained from the sample irradiated by infrared radiation represent a very useful method for observing the chemical composition of different kinds of samples, from cell tissue to various materials. For spectrum analysis, we often use classification algorithms. A suitable algorithm for this task is an artificial neural network. In the diploma thesis, we explored the usefulness of artificial neural networks for classification of infrared spectra. We measured classification accuracies on different data sets and compared them to the results of support vector machines and multinomial logistic regression. We also examined the performance of convolutional neural networks. The results achieved by the artificial neural networks were promising. However, they were not significantly better than those of the support vector machines. On the other hand, the performance of the latter was considerably faster.

Keywords:artificial neural networks, deep learning, infrared spectra

Similar documents

Similar works from RUL:
  1. Plasma extracellular vesicle characteristics correlate with tumor differentiation and predict overall survival in patients with pancreatic ductal adenocarcinoma undergoing surgery with curative intent
  2. Kliničen pomen določanja kromogranina A pri karcinoidnih tumorjih
  3. ǂThe ǂclinical value of tumour markers CEA and CA 19-9 in pancreatic cancer
  4. Intelektualni kapital in razvoj managementa človeškega kapitala v odvisnosti od ugleda podjetja
  5. Merjenje vžigne napetosti plinskega odvodnika v odvisnosti od temperature
Similar works from other Slovenian collections:
  1. Izračun magnetnih razmer v asinhronskem motorju s pomočjo metode končnih elementov
  2. Analitični izračun navijalnih podatkov trifaznih asinhronskih motorjev
  3. Izračun porazdelitve temperature v trifaznem asinhronskem motorju z uporabo metode končnih elementov

Back