izpis_h1_title_alt

Modeliranje sistema fotonapetostne elektrarne in baterijskega hranilnika
ID MLEČNIK, MATEJ (Author), ID Blažič, Boštjan (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,27 MB)
MD5: 8E7EC9204CFB267A81732AF56EA52B79
PID: 20.500.12556/rul/dd360adc-a183-4c4b-8fc6-7d9796dcfdc7

Abstract
Povzetek V uvodu diplomskega dela je najprej predstavljen namen naloge. Glede na to, da se ozaveščenost za čisto in neonesnaženo okolje povečuje iz leta v leto, se podoben trend vidi tudi na energetskem področju. Vse bolj se išče načine, kako brez večjih posegov v okolje in spustov toplogrednih plinov pridelati kar se da učinkovito in čisto električno energijo. Ena boljših rešitev te problematike predstavljajo fotonapetostni sistemi, ki izkoriščajo energijo sonca. Pri proizvodnji električne energije s pomočjo fotonapetostnih modulov ne pride do večjih posegov v okolje in ni nobenih izpustov toplogrednih plinov, zato so fotonapetostni sistemi eden izmed bolj aktualnih in razširjenih načinov proizvodnje okolju prijazne energije iz obnovljivih virov. V glavnem delu te diplomske naloge je predstavljen model fotonapetostnega sistema z baterijskim hranilnikom. Vsi elementi sistema so predstavljeni ločeno po poglavjih, in sicer fotonapetostni moduli, DC/DC pretvorniki, algoritem iskanja točke največje moči (MPPT), razmernik, krmilna enota razmernika, omrežje, breme ter baterijski hranilnik energije. Pri vsakem elementu sistema je pojasnjeno še njegovo matematično ozadje in njihovo delovanje. V dodatnem poglavju so predstavljena še merilna mesta posameznih veličin v sistemu, ki nam služijo kot pokazatelj načina delovanja sistema. V devetem poglavju sledi bistveni del diplomskega dela. Predstavljene so simulacije sistema ob različnih pogojih, in sicer je najprej simuliran sistem brez obremenitve in brez vključenega baterijskega hranilnika. Prikazane so bistvene veličine posameznih elementov. Najprej so predstavljeni časovni poteki moči, napetosti in tokov ob konstantnih vhodnih razmerah, kasneje so vhodne razmere spremenjene na dinamične. Opazno je, da se ob konstantnih razmerah po začetnem času, ki je potreben da se sistem ustali, razmere na izhodnih parametrih sistema ne spremenijo. Če pa imamo dinamične vhodne parametre, se ustrezno spreminjajo tudi veličine na izhodnih parametrih sistema. Glede na izhodne veličine je razvidno, da se izhodna moč in izhodni tok sistema ob zmanjšanju sočnega obsevanja ali povečanju temperature panelov zmanjšata. Postopoma smo v sistem (s konstantnimi razmerami na vhodu) dodajali še breme in baterijski hranilnik. Najprej je simulirano stanje, ko ob določenem času priklopimo nek porabnik na izhodni del sistema. Izhodna moč se skočno zmanjša, saj se moč troši na porabniku. Nato simulacija prikazuje stanje, ko v neobremenjen sistem ob konstantnih razmerah priklopimo baterijski hranilnik, ki lahko deluje v dveh režimih; to je ko se baterija polni ali prazni. Opravljeni sta bili torej obe simulaciji. Razvidno je, da enosmerna napetost na vhodu razmernika v trenutku vklopa baterijskega hranilnika v obeh primerih zaniha. To nihanje se pozna tudi na izhodni moči. Ustrezno se izhodna moč sistema zmanjša ali poveča – odvisno od tega, ali se nam baterija polni ali oddaja energijo omrežju. Na smo opravili še simulacije celotnega sistema z dinamičnim bremenom in različnimi stanji baterije. Spreminjali smo napolnjenost baterije (SOC – state of charge) in velikost porabnika, priključenega na sistem, pri čemer smo opazovali izhodne veličine (moč, napetost, tok) in veličine na bateriji. Zasnovan sistem deluje po principu, da v kolikor je baterija dovolj polna, oddaja energijo v omrežje (SOC je večji od 75 %). Če nimamo priključenega velikega bremena na izhodu in imamo močno sončno obsevanje, torej imamo višek proizvedene energije, se v primeru, da je baterija pod 50 % SOC, vključi režim polnjenja baterije. Če se v tem trenutku vključi večji porabnik, se polnjenje baterije prekine. Podobno velja, ko imamo priključeno veliko breme in je SOC večji od 50 %; takrat začne baterija oddajati energijo v sistem, torej pripomore k napajanju porabnika. Vse te simulacije so prikazane v devetem poglavju. Končne ugotovitve kažejo, da vsaka sprememba na enosmerni strani sistema vpliva na izhodne veličine. Potreben je čas, da se razmere znova ustalijo. Ko se ustali enosmerna napetost na vhodu v razsmernik, se ustali tudi izhodna trifazna napetost iz razsmernika.

Language:Slovenian
Keywords:modeliranje fotonapetostnega sistema, baterijski hranilnik, MPPT, DC/DC pretvornik, PV modul
Work type:Undergraduate thesis
Organization:FE - Faculty of Electrical Engineering
Year:2016
PID:20.500.12556/RUL-85192 This link opens in a new window
Publication date in RUL:14.09.2016
Views:2440
Downloads:425
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Modelling of a photovoltaic and battery-storage system
Abstract:
Abstract The purpose of this diploma thesis is described in the introduction. The increased awareness in regards with air pollution has affected the trends in the energy field, which now seeks to minimise the effects on the environment. The main focus is to minimise the greenhouse effects and to produce the electricity using renewable energy sources. One of the most advanced solutions for the above-described problem are the photovoltaic systems, which use the solar energy. Since the production of power using the photovoltaic modules minimise the greenhouse effects on the environment, the photovoltaic systems are becoming the primary and most commonly used source for the renewable energy source. The main part of this diploma thesis presents the model of photovoltaic system using the battery storage tank. All system elements are described in separate chapters, including photovoltaic modules, DC/DC converters, the MPPT algorithm (maximum power point tracking), inverter inverter control unit, grid, the grid load and battery storage tank. Each system element and its functions are described in more detail using the mathematical background. The additional chapter presents the performance measurements within the system, which serve as indicator of the system's operation. The ninth chapter is the most important part of this diploma thesis. It presents the simulations conducted under different conditions. The first, is the simulation of the system without additional load, and battery storage tank. It demonstrates the performance measurements of each element. First, it demonstrates the power changes throughout specific time span and then the voltage and current flow using the constant input conditions. Further on, it also demonstrates the elements using dynamic input conditions. The results indicate that constant conditions, after the time it takes for the system to stabilise, do not change, therefore, the output conditions/measurements remain the same. However, the use of dynamic input conditions simultaneously changes the output conditions/measurements as well. The output values further indicate that the system's output power and current depend on the temperature of the solar panels and solar radiation. If the solar radiation decreases, the output power and current decreases also. Moreover, if the temperature of the solar panels increases the output power and current decreases. To further test the system (with the constant input conditions) we gradually loaded the system with increased power load and we connected the battery storage tank to the system. The presentation of the first simulation includes the results as indicated when adding the load at the output at a specific time. As expected the output power decreases exponentially, due to additional load. The second presentation includes the simulation of the conditions when the unloaded system in constant conditions is attached to the battery storage tank either when the battery is charging or when it is not. Therefore, we have completed two simulations. It became evident that current at the input of the inverter power swings when we add the battery storage tank, which is also evident when measuring the output power. Thus, the output power of the system increases or decreases depending on whether the battery is charging or emitting energy to the system. The next simulation was conducted using the dynamic load and different battery conditions. At this point we have been following the SOC (state of charge) and the quantity of the load attached to the system followed by specific measurements of the output values (power, voltage, electrical current) and the battery values. The above-described system has been designed following the principle that if the battery is full enough, it emits the energy into the network, therefore, the SOC is higher than 75%. Hence, if we do not add the excessive load at the output and the appropriate amount of the solar radiation, the results indicate that there is also an excess of produced power up to the point the battery reaches SOC under 50%, when the battery charging starts. However, if we add extra load the charging stops. Similarly, if the system is loaded and the SOC is higher than 50%; the battery starts emitting the energy into the environment and thus, powers up the user. All above-described simulations are described in chapter 9. The final conclusions indicate that changes on the DC side of the system affect the output sizes indicated that it takes time for the system to stabilize. However, when the DC voltage at the input of the inverter stabilizes, the three phase output voltage from the inverter also stabilizes.

Keywords:photovoltaic system modelling, battery storage tank, MPPT, DC/DC converter, PV module

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back