izpis_h1_title_alt

Sistem za avtomatizirano trgovanje z uporabo strojnega učenja, rudarjenja podatkovnih tokov in tehnične analize trgovanja
Fortuna, Rok (Author), Jurič, Branko Matjaž (Mentor) More about this mentor... This link opens in a new window, Šubelj, Lovro (Co-mentor)

.pdfPDF - Presentation file, Download (666,82 KB)

Abstract
Digitalno trgovanje z dobrinami (delnicami, valutami itd.) danes močno izpodriva klasično trgovanje, saj se je veliko borz preselilo v oblak. Računalnik poskrbi za izmenjavo dobrin, hkrati pa lahko tudi samostojno trguje. Avtomatski trgovalni sistem je računalniški sistem, ki trguje z dobrinami brez posredovanja človeka. Tak pristop poleg objektivnosti in empiričnosti odločitev omogoča hitre izvršitve kupčij, ki so ključne za uspeh. V diplomski nalogi raziskujemo avtomatske trgovalne sisteme in njihov način delovanja. Naredimo pregled področja tehnične analize trgovanja, ki se ukvarja s kvantificiranjem gibanja cen na trgu. Definiramo problem trgovanja z vidika nadzorovanega strojnega učenja in rudarjenja podatkovnih tokov. S področja strojnega učenja posebej izpostavimo algoritem k-najbližjih sosedov, umetne nevronske mreže in naivni Bayesov klasifikator. S pomočjo omenjenih algoritmov in podatkov, pridobljenih z metodami tehnične analize trgovanja, zasnujemo avtomatski trgovalni sistem. S simulacijo ga ovrednotimo na realnem gibanju cen kriptovalute Bitcoin in kriptovalute Litecoin. Avtomatsko trgovanje se z vidika strojnega učenja izkaže za zelo zahteven problem. Kljub temu nam uspe, z uporabo algoritma k-najbližjih sosedov in umetnih nevronskih mrež, doseči zadovoljivo napovedno uspešnost in posledično profitabilnost.

Language:Slovenian
Keywords:avtomatski trgovalni sistemi, strojno učenje, umetne nevronske mreže, k-najbližjih sosedov, naivni Bayesov klasifikator, tehnična analiza trgovanja
Work type:Bachelor thesis/paper (mb11)
Organization:FRI - Faculty of computer and information science
Year:2016
Views:956
Downloads:304
Metadata:XML RDF-CHPDL DC-XML DC-RDF
 
Average score:(0 votes)
Your score:Voting is allowed only to logged in users.
:
Share: Bookmark and Share

Secondary language

Language:English
Title:Automated trading system using machine learning, stream mining and technical analysis of trading
Abstract:
Digital trading of securities is beginning to dominate over classical trading and the trading exchanges are rapidly migrating to the cloud. Computer is not only present in the exchange process but is also capable of making trading decisions on human's behalf. Automated trading system is a computer system, capable of trading without human interaction. The benefits of such an approach to trading are objectivity and fast execution of orders, which are often crucial for success. In this thesis we examine automated trading systems and their structure. We study the field of technical analysis which quantifies market price movements. We define trading as a supervised machine learning and stream mining problem and examine the k-nearest neighbours algorithm, naive Bayes classifier and artificial neural networks. Based on our research we design an automated trading system. We evaluate its performance on actual market data of cryptocurrencies Bitcoin and Litecoin using a simulated environment. Automated trading turns out to be a difficult machine learning problem, but with the use of the k-nearest neighbours algorithm and artificial neural networks we manage to achieve decent success in our predictions and profitability.

Keywords:automated trading systems, machine learning, artificial neural networks, k-nearest neighbours, naive Bayes classifier, technical analysis

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Comments

Leave comment

You have to log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back