izpis_h1_title_alt

Napovedovanje uspešnosti nogometnih ekip z uporabo analize omrežij
ID KRSTEV, VASIL (Author), ID Šubelj, Lovro (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,60 MB)
MD5: 4F7FB86ECBF8073A2CE94D0426B53D06
PID: 20.500.12556/rul/d99a9571-f96d-4af0-a18c-8bc26154b91a

Abstract
Cilj diplomske naloge je podrobna analiza nogometnih tekem s pomočjo analize omrežij ter gradnja napovednega modela za napovedovanje lastnosti tekem na podlagi atributov dobljenih iz tovrstnega omrežja. Področji analize omrežij in podatkovnega rudarjenja postajata vse bolj priljubljeni področji v računalniškem svetu odkrivanje znanj iz podatkov. V sodobnem svetu se opravljajo meritve tudi pri nogometnih tekmah, zato smo se odločili, da to področje podrobneje raziščemo in analiziramo s pomočjo analize omrežij ter poskušamo čim natančneje napovedati lastnosti same tekme kot so število točk, golov, kartonov, kotov in drugo. V nalogi so najprej podrobneje predstavljene metode in tehnike analize omrežij. Nato so predstavljeni vsi algoritmi in mere uspešnosti, ki jih uporabljamo pri napovedi. Sledi predstavitev podatkov, krajši primer delovanja odkrivanja skupnosti ter potek gradnje napovednega modela. Sledi interpretacija dejanskih napovedi ter primerjava učinkovitosti napovedne točnosti. Pri testiranju smo preverili napovedi za vse lastnosti dobljene iz analize omrežij, predstavili pa smo le tiste, ki so najbolj natančno napovedale ciljno spremenljivko. Za zaključek smo na kratko primerjali rezultate ter izpostavili glavne pomanjkljivosti. Podali smo tudi navodila za nadaljnje delo ter smernice kako napovedni model lahko še izboljšamo.

Language:Slovenian
Keywords:nogomet, analiza omrezij, podatkovno rudarjenje, napovedovanje.
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2016
PID:20.500.12556/RUL-85098 This link opens in a new window
Publication date in RUL:12.09.2016
Views:1850
Downloads:507
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Predicting performance of football teams using network analysis
Abstract:
The goal of this thesis was a detailed analysis of football matches through network analysis and building a predictive model for predicting characteristics of matches based on attributes obtained from such a network. The fields of network analysis and data mining are becoming increasingly popular in the computing world for data knowledge discovery. In the modern world, people are making a lot of measurements on football matches, so we decided to investigate this area in detail, analyse it through network analysis and try to most accurately predict the characteristics of a single game such as the number of points, goals, cards, corners and other. The thesis first presents the methods and techniques for network analysis. Then the algorithms and measures of performance are presented, which are used for the prediction. Next, we present the data, give an example of application of community detection and present the process of building predictive models. What follows is the actual interpretation of predictions and comparison of the effectiveness of predictive accuracy. We have examined the prediction strength for all of the properties obtained from network analysis, but we present only those that gave best results. In conclusion, we briefly compare the results and highlight the main weaknesses. We present possible directions for future work and give guidance on how the predictive model can be further improved.

Keywords:football, network analysis, data mining, prediction.

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back