izpis_h1_title_alt

Porazdeljeno procesiranje, analiza in vizualizacija podatkov z mehanizmi visoke skalabilnosti
ID GAČNIK, MATEVŽ (Author), ID Marolt, Matija (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (6,73 MB)
MD5: D66F34FA1097E892FA76034298A03951
PID: 20.500.12556/rul/d06e63a1-ac2f-48a4-966c-58969d511b5e

Abstract
V nalogi smo predstavili konceptualni in izvedbeni model za skalabilno, porazdeljeno in uteženo izvajanje velike količine operacij na več procesnih enotah, ki delujejo v oblaku. Delo prikazuje način razvoja sistemov za procesiranje, ki imajo minimalne procesne, kot tudi časovne omejitve ob zahtevi po spremembi količine procesne moči. Razloženi so načini implementacije elastičnega prilagajanja glede na potrebe z uporabo procesiranja v oblaku. V delu smo preučili načine za filtriranje uporabnih podatkov po kriterijih, ki so za problemsko domeno pomembni. Prikazane so možnosti za napredno filtriranje podatkov glede na zahteve analiz. Delo podaja tudi načine in izvedbo vizualizacije naprednih analiz nad zajetimi in procesiranimi podatki v obliki intuitivnih in interaktivnih grafov, grafikonov, besednih oblakov ali drugih za uporabnika primernih prikazih.

Language:Slovenian
Keywords:porazdeljeno procesiranje, analiza, paralelizem, oblak, računske operacije, skalabilnost
Work type:Master's thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2016
PID:20.500.12556/RUL-85017 This link opens in a new window
Publication date in RUL:09.09.2016
Views:1226
Downloads:300
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Parallel data processing, analysis and visualization using high scalability mechanisms
Abstract:
In this work we present conceptual and implementation model for scalable, distributed and balanced execution of large number of compute operations running on multiple processing units in the cloud. We provide system development methods for large scale processing with minimal time constraints and limitations in regard to increasing scale-out parallelism in the cloud. Implementation details regarding elastic adjustment to processing units are discussed in connection to required processing power needed in a cloud environment. Work provides filtering approaches for useful data in the described problem domain. We present options for advanced data filtering in multiple stages, which correlate with needed analyses requirements. At the end of this work we present ways of visualization of advanced analysis of gathered data in a form of intuitive and interactive UI components, graphs, word clouds and other user acceptable views.

Keywords:parallel processing, analysis, parallelism, cloud, compute operations, scalability

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back