Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Prednosti in slabosti globokih nevronskih omrežij za razpoznavanje obrazov
ID
BRUMEN, LUKA
(
Author
),
ID
Štruc, Vitomir
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(3,66 MB)
MD5: 410B7EDA4A887CDE5A83450BCB68C0D1
PID:
20.500.12556/rul/b5de4e37-88b0-4403-b403-87d02cf7fbd9
Image galllery
Abstract
V delu je analiziran vpliv spremembe osvetlitve, poze subjekta, velikost izreza obraznega področja, kvalitete in resolucije na razpoznavanje obrazov enega najmodernejših modelov globoke nevronske mreže. Rdeča nit dela je sposobnost verifikacije 16 plastnega modela konvolucijske nevronske mreže VGG, da določi ali je na paru slik ista oseba (uporabnik) ali ne (vsiljivec). Za potrebe nekaterih testov smo razvili postopke za simulacijo nenadzorovanih pogojev zajema slik in analizirali rezultate. Slike, ki smo jih pridobili z glajenjem, izrezovanjem obraznega področja in zniževanjem resolucije, lahko razumemo kot posledico slabših pogojev pri zajemu ali slabšega sistema za zajem slik, uporaba le teh v aplikacijah pa poceni končno ceno. Pokazali bomo, da se model v takšnih pogojih dobro obnese. Robustnost modela na različne svetlobne pogoje bomo preizkusili na zbirki EYB, medtem ko bomo robustnost modela na vpliv poze subjekta analizirali z zbirko FERET. Za ostale teste smo uporabili zbirko LFW, ki smo jo za potrebe tega dela obdelali tako, da smo postopoma slabšali slike uporabnikov. Razdalje med vektorji značilk smo računali s pomočjo kosinusne razdalje, za prikaz učinkovitosti smo uporabili krivulje ROC.
Language:
Slovenian
Keywords:
računalniški vid
,
razpoznavanje obrazov
,
globoke nevronske mreže
,
konvolucijske nevronske mreže
,
CNN
,
ConvNet
Work type:
Undergraduate thesis
Organization:
FE - Faculty of Electrical Engineering
Year:
2016
PID:
20.500.12556/RUL-85009
Publication date in RUL:
09.09.2016
Views:
2093
Downloads:
356
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
BRUMEN, LUKA, 2016,
Prednosti in slabosti globokih nevronskih omrežij za razpoznavanje obrazov
[online]. Bachelor’s thesis. [Accessed 25 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=85009
Copy citation
Share:
Secondary language
Language:
English
Title:
Strengths and weaknesses of deep face recognition models
Abstract:
In this paper we analyse the effects of changes in illumination, pose, image size, facial area size, image quality and resolution on the face recognition performance of a state-of-the-art deep neural network. The main focus of this work lies in the performance of the VGG model, a 16-layer convolutional neural network and its ability to correctly classify several pairs of test images as clients or imposters. For some of the tests, we provide methods that simulate image acquisition in unstable and uncontrolled environments and discuss the results. Effects of blurring, cropping and resizing facial images could be understood as a result of a less powerful image acquisition system in terms of quality, the use of which consequently reduces the costs of a day to day face recognition application. We show that the said system performs well in such conditions. The effects of illumination and pose on face recognition accuracy are analysed using EYB and FERET datasets respectively. The study of other said changes of environmental variables are analysed on the LFW database and for which we pre-prepare several subsets, where we steadily deteriorate the conditions of client's probe images compared to the gallery image and measure the distance between its feature vectors using the cosine distance.
Keywords:
computer vision
,
face recognition
,
deep neural network
,
convolutional neural network
,
CNN
,
ConvNet
Similar documents
Similar works from RUL:
Finite element analysis of limit load and localized failure of structures
Numerično modeliranje viskoelastičnih materialov
Analiza 2D konstrukcij z metodo končnih elementov
Topološka optimizacija paličnih jeklenih struktur z uporabo evolucijsko konstrukcijskih metod
Modeliranje mehanskega odziva lupinske konstrukcije inovativne zemeljske postaje
Similar works from other Slovenian collections:
Uporaba programa COSMOS/M Ver. 1.75 for Windows NT&95 za računanje konstrukcij v gradbeništvu
Elastostatična analiza nosilne konstrukcije kontejnerja po MKE
Uporaba programa COSMOS/Designer I za načrtovanje in računanje konstrukcij
Izdelava programske opreme za razporeditev potresne obtežbe na elastične okvirne konstrukcije
Umerjanje nove metode za ustvarjanje nepopolnosti na vitkih strukturah
Back