izpis_h1_title_alt

Linearne diferencialne enačbe 2. reda in nihanje
ID Kurspahić, Razija (Author), ID Slapar, Marko (Mentor) More about this mentor... This link opens in a new window, ID Starčič, Tadej (Comentor)

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/3693/ This link opens in a new window

Abstract
V prvem delu diplomskega dela obravnavamo splošno teorijo linearnih diferencialnih enačb 2. reda in sistemov linearnih diferencialnih enačb 1. reda. V primeru konstantnih koeficientov predstavimo načine analitičnega reševanja diferencialnih enačb. Drugi del diplomskega dela obravnava uporabnost in praktično rabo linearnih diferencialnih enačb 2. reda s konstantnimi koeficienti na primeru vzmetnega nihanja, kjer s pomočjo znanih fizikalnih zakonov izpeljemo diferencialne enačbe in nato uporabimo postopke za reševanje le-teh. Zaključimo s primerom sklopljenega nihanja, ko imamo povezanih več vzmetnih nihal, kjer se reševanja lotimo z uporabo linearnega sistema diferencialnih enačb 1. reda.

Language:Slovenian
Keywords:linearna diferencialna enačba 2. reda
Work type:Undergraduate thesis
Typology:2.11 - Undergraduate Thesis
Organization:PEF - Faculty of Education
Year:2016
PID:20.500.12556/RUL-84911 This link opens in a new window
COBISS.SI-ID:11143241 This link opens in a new window
Publication date in RUL:09.09.2016
Views:2673
Downloads:311
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Second order linear differential equations and oscillation
Abstract:
In the first part of this diploma thesis we discuss the general theory on linear differential equations of second order and systems of linear differential equation of first order. For constant coefficients, we present analytical methods of solving differential equations. The second part of diploma thesis focuses on usability and practical use of linear differential equations of second order with constant coefficients in case of spring oscillation, where we first deduce differential equations using well-known laws of physics and then use procedures for solving these equations. We conclude with a case of coupled oscillation, which connects several springs. In order to solve the case of coupled oscillation, we use a linear system of differential equations of first order.

Keywords:linear differential equation second order

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back