Let ▫$X$▫ be a connected non-normal 4-valent arc-transitive Cayley graph on a dihedral group ▫$D_n$▫ such that ▫$X$▫ is bipartite, with the two bipartition sets being the two orbits of the cyclic subgroup within ▫$D_n$▫. It is shown that ▫$X$▫ is isomorphic either to the lexicographic product ▫$C_n[2K_1]$▫ with ▫$n \geq 4$▫ even, or to one of the five sporadic graphs on 10, 14, 26, 28 and 30 vertices, respectively.
|